2021 Vol. 10, No. 8

Light People
Light People: Professor Lin Li
Hui Wang, Heng Gu
Published. 2021, 10(8) : 1388-1394 doi: 10.1038/s41377-021-00566-x
How to deal with climate change, how to mitigate or even reverse it, maybe the hottest scientific topic of the 21st century. Do you know that a Chinese scientist and his team contributed to climate change control by reducing PM2.5 in diesel car exhaust by 35–40%? That scientist is Prof. Lin Li, a Fellow of the Royal Academy of Engineering and founder of the Laser Processing Research Centre at The University of Manchester, United Kingdom. Of course, this is only one example of Professor Li's scientific achievements. As a pioneer of microsphere super-resolution lens, his team, in collaboration with Singapore colleagues, broke the optical diffraction limit in optical microscopic imaging, making real-time observation of biological viruses without interference possible. He also used lasers to synthesize new nanomaterials which kill drug-resistant bacteria while remaining harmless to healthy human cells, which led to the development and breakthrough of related research fields. We are much honored to have Professor Lin Li for an exclusive interview in which he recalls his years of scientific research experience and talks about the future development trend of laser material processing.
Editorial
News & Views
Unlocking the future of optical security with metasurfaces
Jaehyuck Jang, Trevon Badloe, Junsuk Rho
Published. 2021, 10(8) : 1398-1400 doi: 10.1038/s41377-021-00589-4
The complex degrees of freedom of light, such as amplitude, phase, polarization, and orbital angular momentum, make it a prime candidate for use in optical security and encryption. By exploiting the unique characteristics of metasurfaces, exciting new optical security platforms have been demonstrated.
Letter
Quantum discord of thermal two-photon orbital angular momentum state: mimicking teleportation to transmit an image
Lixiang Chen
Published. 2021, 10(8) : 1401-1408 doi: 10.1038/s41377-021-00585-8
We formulate a density matrix to fully describe two-photon state within a thermal light source in the photon orbital angular momentum (OAM) Hilbert space. We prove the separability, i.e., zero entanglement of the thermal two-photon state. Still, we reveal the hidden quantum correlations in terms of geometric measures of discord. By mimicking the original protocol of quantum teleportation, we demonstrate that the non-zero quantum discord can be utilized to transmit a high-dimensional OAM state at the single-photon level. It is found that albeit the low fidelity of teleportation due to the inherent component of maximally mixed state, the information of all parameters that characterize the original state can still be extracted from the teleported one. Besides, we demonstrate that the multiple repetitions of the protocol, enable the transmission of a complex-amplitude light field, e.g., an optical image, regardless of being accompanied with a featureless background. We also distinguish our scheme of optical image transmission from that of ghost imaging.
Reviews
Metalorganic chemical vapor deposition of InN quantum dots and nanostructures
Caroline E. Reilly, Stacia Keller, Shuji Nakamura, Steven P. DenBaars
Published. 2021, 10(8) : 1409-1420 doi: 10.1038/s41377-021-00593-8
Using one material system from the near infrared into the ultraviolet is an attractive goal, and may be achieved with (In, Al, Ga)N. This Ⅲ-N material system, famous for enabling blue and white solid-state lighting, has been pushing towards longer wavelengths in more recent years. With a bandgap of about 0.7 eV, InN can emit light in the near infrared, potentially overlapping with the part of the electromagnetic spectrum currently dominated by Ⅲ-As and Ⅲ-P technology. As has been the case in these other Ⅲ–Ⅴ material systems, nanostructures such as quantum dots and quantum dashes provide additional benefits towards optoelectronic devices. In the case of InN, these nanostructures have been in the development stage for some time, with more recent developments allowing for InN quantum dots and dashes to be incorporated into larger device structures. This review will detail the current state of metalorganic chemical vapor deposition of InN nanostructures, focusing on how precursor choices, crystallographic orientation, and other growth parameters affect the deposition. The optical properties of InN nanostructures will also be assessed, with an eye towards the fabrication of optoelectronic devices such as light-emitting diodes, laser diodes, and photodetectors.
Determination of the embedded electronic states at nanoscale interface via surface-sensitive photoemission spectroscopy
Hui-Qiong Wang, Jiayi Xu, Xiaoyuan Lin, Yaping Li, Junyong Kang, et al.
Published. 2021, 10(8) : 1421-1431 doi: 10.1038/s41377-021-00592-9
The fabrication of small-scale electronics usually involves the integration of different functional materials. The electronic states at the nanoscale interface plays an important role in the device performance and the exotic interface physics. Photoemission spectroscopy is a powerful technique to probe electronic structures of valence band. However, this is a surface-sensitive technique that is usually considered not suitable for the probing of buried interface states, due to the limitation of electron-mean-free path. This article reviews several approaches that have been used to extend the surface-sensitive techniques to investigate the buried interface states, which include hard X-ray photoemission spectroscopy, resonant soft X-ray angle-resolved photoemission spectroscopy and thickness-dependent photoemission spectroscopy. Especially, a quantitative modeling method is introduced to extract the buried interface states based on the film thickness-dependent photoemission spectra obtained from an integrated experimental system equipped with in-situ growth and photoemission techniques. This quantitative modeling method shall be helpful to further understand the interfacial electronic states between functional materials and determine the interface layers.
Perspective
Precursor-dependent structural diversity in luminescent carbonized polymer dots (CPDs): the nomenclature
Qingsen Zeng, Tanglue Feng, Songyuan Tao, Shoujun Zhu, Bai Yang
Published. 2021, 10(8) : 1432-1444 doi: 10.1038/s41377-021-00579-6
Carbon dots (CDs) have received immense attention in the last decade because they are easy-to-prepare, nontoxic, and tailorable carbon-based fluorescent nanomaterials. CDs can be categorized into three subgroups based on their morphology and chemical structure: graphene quantum dots (GQDs), carbon quantum dots (CQDs), and carbonized polymer dots (CPDs). The detailed structures of the materials can vary significantly, even within the same category. This property is particularly predominant in chemically synthesized CPDs, as their formation proceeds via the polymerization–carbonization of molecules or polymer precursors. Abundant precursors endow CPDs with versatile structures and properties. A wide variety of carbon nanomaterials can be grouped under the category of CPDs because of their observed diversity. It is important to understand the precursor-dependent structural diversity observed in CPDs. Appropriate nomenclature for all classes and types of CPDs is proposed for the better utilization of these emerging materials.
Articles
Miniature planar telescopes for efficient, wide-angle, high-precision beam steering
Ziqian He, Kun Yin, Shin-Tson Wu
Published. 2021, 10(8) : 1445-1454 doi: 10.1038/s41377-021-00576-9
Non-mechanical beam steerers with lightweight, compact, high-efficiency, high-precision, and/or large-angle are pivotal for light detection and ranging (LiDAR) of autonomous vehicles, eye-tracking for near-eye displays, microscopy, optical tweezers, and high-precision three-dimensional (3D) printing. However, even the most matured optical phased array can only provide quasi-continuous, efficient beam steering within a small angle range. A telescope module with an angle magnification function can be coupled to enlarge the steering range or precision. But obtaining a compact, low-cost, lightweight, high-quality telescope module with conventional optics remains challenging. Patterned liquid crystal-based planar optical elements offer great design freedom for manipulating the phase profile of light in 2D space. Owing to the advantages of high efficiency, thinness, low cost, easy processing, flexibility, and response to environmental stimuli, a plethora of high-quality optical devices have been demonstrated. Here, a miniature planar telescope mediated by liquid crystal polymers is proposed to offer angle magnification independent of incident spatial location. It consists of two cascaded liquid crystal planar optical elements, each performing a predefined mathematical transformation. By this concept, planar optical elements are fabricated using a new exposure method and assembled into planar telescopes with different magnification factors. Within the incident field range, over 84.6% optical efficiency is achieved with small wavefront distortion. Such a miniature planar telescope shows the potential of cascaded liquid crystal planar optical elements for realizing functionalities that cannot be fulfilled by single optical elements, and enables lightweight, low loss, passive optical transmitters for widespread applications.
Direct observation of chaotic resonances in optical microcavities
Shuai Wang, Shuai Liu, Yilin Liu, Shumin Xiao, Zi Wang, et al.
Published. 2021, 10(8) : 1455-1461 doi: 10.1038/s41377-021-00578-7
Optical microcavities play a significant role in the study of classical and quantum chaos. To date, most experimental explorations of their internal wave dynamics have focused on the properties of their inputs and outputs, without directly interrogating the dynamics and the associated mode patterns inside. As a result, this key information is rarely retrieved with certainty, which significantly restricts the verification and understanding of the actual chaotic motion. Here we demonstrate a simple and robust approach to directly and rapidly map the internal mode patterns in chaotic microcavities. By introducing a local index perturbation through a pump laser, we report a spectral response of optical microcavities that is proportional to the internal field distribution. With this technique, chaotic modes with staggered mode spacings can be distinguished. Consequently, a complete chaos assisted tunneling (CAT) and its time-reversed process are experimentally verified in the optical domain with unprecedented certainty.
Ultra-broadband metamaterial absorbers from long to very long infrared regime
Yu Zhou, Zheng Qin, Zhongzhu Liang, Dejia Meng, Haiyang Xu, et al.
Published. 2021, 10(8) : 1462-1473 doi: 10.1038/s41377-021-00577-8
Broadband metamaterials absorbers with high absorption, ultrathin thickness and easy configurations are in great demand for many potential applications. In this paper, we first analyse the coupling resonances in a Ti/Ge/Ti three-layer absorber, which can realise broadband absorption from 8 to 12 μm. Then we experimentally demonstrate two types of absorbers based on the Ti/Ge/Si3N4/Ti configuration. By taking advantage of coupling surface plasmon resonances and intrinsic absorption of lossy material Si3N4, the average absorptions of two types of absorbers achieve almost 95% from 8 to 14 μm (experiment result: 78% from 6.5 to 13.5 μm). In order to expand the absorption bandwidth, we further propose two Ti/Si/SiO2/Ti absorbers which can absorb 92% and 87% of ultra-broadband light in the 14-30 μm and 8-30 μm spectral range, respectively. Our findings establish general and systematic strategies for guiding the design of metamaterial absorbers with excellent broadband absorption and pave the way for enhancing the optical performance in applications of infrared thermal emitters, imaging and photodetectors.
High-Q microresonators on 4H-silicon-carbide-on-insulator platform for nonlinear photonics
Chengli Wang, Zhiwei Fang, Ailun Yi, Bingcheng Yang, Zhe Wang, et al.
Published. 2021, 10(8) : 1474-1484 doi: 10.1038/s41377-021-00584-9
The realization of high-quality (Q) resonators regardless of the underpinning material platforms has been a ceaseless pursuit, because the high-Q resonators provide an extreme environment for confining light to enable observations of many nonlinear optical phenomenon with high efficiencies. Here, photonic microresonators with a mean Q factor of 6.75 × 106 were demonstrated on a 4H-silicon-carbide-on-insulator (4H-SiCOI) platform, as determined by a statistical analysis of tens of resonances. Using these devices, broadband frequency conversions, including second-, third-, and fourth-harmonic generations have been observed. Cascaded Raman lasing has also been demonstrated in our SiC microresonator for the first time, to the best of our knowledge. Meanwhile, by engineering the dispersion properties of the SiC microresonator, we have achieved broadband Kerr frequency combs covering from 1300 to 1700 nm. Our demonstration represents a significant milestone in the development of SiC photonic integrated devices.
Reversible 3D optical data storage and information encryption in photo-modulated transparent glass medium
Zhen Hu, Xiongjian Huang, Zhengwen Yang, Jianbei Qiu, Zhiguo Song, et al.
Published. 2021, 10(8) : 1485-1493 doi: 10.1038/s41377-021-00581-y
Transparent glass has been identified as a vital medium for three-dimensional (3D) optical information storage and multi-level encryption. However, it has remained a challenge for directly writing 3D patterning inside a transparent glass using semiconductor blue laser instead of high-cost femtosecond laser. Here, we demonstrate that rare earth ions doped transparent glass can be used as 3D optical information storage and data encryption medium based on their reversible transmittance and photoluminescence manipulation. The color of tungsten phosphate glass doped with rare earth ions change reversibly from light yellow to blue upon alternating 473 nm laser illumination and temperature stimulation, resulting in the reversible luminescence modulation. The information data could be repeatedly written and erased in arbitrary 3D space of transparent glass, not only showing the ability of the excellent reproducibility and storage capacity, but also opening opportunities in information security. The present work expands the application fields of luminescent glass, and it is conducive to develop a novel 3D data storage and information encryption media.
Non-genetic photoacoustic stimulation of single neurons by a tapered fiber optoacoustic emitter
Linli Shi, Ying Jiang, Fernando R. Fernandez, Guo Chen, Lu Lan, et al.
Published. 2021, 10(8) : 1494-1506 doi: 10.1038/s41377-021-00580-z
Neuromodulation at high spatial resolution poses great significance in advancing fundamental knowledge in the field of neuroscience and offering novel clinical treatments. Here, we developed a tapered fiber optoacoustic emitter (TFOE) generating an ultrasound field with a high spatial precision of 39.6 µm, enabling optoacoustic activation of single neurons or subcellular structures, such as axons and dendrites. Temporally, a single acoustic pulse of sub-microsecond converted by the TFOE from a single laser pulse of 3 ns is shown as the shortest acoustic stimuli so far for successful neuron activation. The precise ultrasound generated by the TFOE enabled the integration of the optoacoustic stimulation with highly stable patch-clamp recording on single neurons. Direct measurements of the electrical response of single neurons to acoustic stimulation, which is difficult for conventional ultrasound stimulation, have been demonstrated. By coupling TFOE with ex vivo brain slice electrophysiology, we unveil cell-type-specific responses of excitatory and inhibitory neurons to acoustic stimulation. These results demonstrate that TFOE is a non-genetic single-cell and sub-cellular modulation technology, which could shed new insights into the mechanism of ultrasound neurostimulation.
1700 nm optical coherence microscopy enables minimally invasive, label-free, in vivo optical biopsy deep in the mouse brain
Jun Zhu, Hercules Rezende Freitas, Izumi Maezawa, Lee-way Jin, Vivek J. Srinivasan
Published. 2021, 10(8) : 1507-1519 doi: 10.1038/s41377-021-00586-7
In vivo, minimally invasive microscopy in deep cortical and sub-cortical regions of the mouse brain has been challenging. To address this challenge, we present an in vivo high numerical aperture optical coherence microscopy (OCM) approach that fully utilizes the water absorption window around 1700 nm, where ballistic attenuation in the brain is minimized. Key issues, including detector noise, excess light source noise, chromatic dispersion, and the resolution-speckle tradeoff, are analyzed and optimized. Imaging through a thinned-skull preparation that preserves intracranial space, we present volumetric imaging of cytoarchitecture and myeloarchitecture across the entire depth of the mouse neocortex, and some sub-cortical regions. In an Alzheimer's disease model, we report that findings in superficial and deep cortical layers diverge, highlighting the importance of deep optical biopsy. Compared to other microscopic techniques, our 1700 nm OCM approach achieves a unique combination of intrinsic contrast, minimal invasiveness, and high resolution for deep brain imaging.
Quasi-phase-matching-division multiplexing holography in a three-dimensional nonlinear photonic crystal
Pengcheng Chen, Chaowei Wang, Dunzhao Wei, Yanlei Hu, Xiaoyi Xu, et al.
Published. 2021, 10(8) : 1520-1526 doi: 10.1038/s41377-021-00588-5
Nonlinear holography has recently emerged as a novel tool to reconstruct the encoded information at a new wavelength, which has important applications in optical display and optical encryption. However, this scheme still struggles with low conversion efficiency and ineffective multiplexing. In this work, we demonstrate a quasi-phase-matching (QPM) -division multiplexing holography in a three-dimensional (3D) nonlinear photonic crystal (NPC). 3D NPC works as a nonlinear hologram, in which multiple images are distributed into different Ewald spheres in reciprocal space. The reciprocal vectors locating in a given Ewald sphere are capable of fulfilling the complete QPM conditions for the high-efficiency reconstruction of the target image at the second-harmonic (SH) wave. One can easily switch the reconstructed SH images by changing the QPM condition. The multiplexing capacity is scalable with the period number of 3D NPC. Our work provides a promising strategy to achieve highly efficient nonlinear multiplexing holography for high-security and high-density storage of optical information.
Anti-scattering light focusing by fast wavefront shaping based on multi-pixel encoded digital-micromirror device
Jiamiao Yang, Qiaozhi He, Linxian Liu, Yuan Qu, Rongjun Shao, et al.
Published. 2021, 10(8) : 1527-1535 doi: 10.1038/s41377-021-00591-w
Speed and enhancement are the two most important metrics for anti-scattering light focusing by wavefront shaping (WS), which requires a spatial light modulator with a large number of modulation modes and a fast speed of response. Among the commercial modulators, the digital-micromirror device (DMD) is the sole solution providing millions of modulation modes and a pattern rate higher than 20 kHz. Thus, it has the potential to accelerate the process of anti-scattering light focusing with a high enhancement. Nevertheless, modulating light in a binary mode by the DMD restricts both the speed and enhancement seriously. Here, we propose a multi-pixel encoded DMD-based WS method by combining multiple micromirrors into a single modulation unit to overcome the drawbacks of binary modulation. In addition, to efficiently optimize the wavefront, we adopted separable natural evolution strategies (SNES), which could carry out a global search against a noisy environment. Compared with the state-of-the-art DMD-based WS method, the proposed method increased the speed of optimization and enhancement of focus by a factor of 179 and 16, respectively. In our demonstration, we achieved 10 foci with homogeneous brightness at a high speed and formed W- and S-shape patterns against the scattering medium. The experimental results suggest that the proposed method will pave a new avenue for WS in the applications of biomedical imaging, photon therapy, optogenetics, dynamic holographic display, etc.
Correlative optical photothermal infrared and X-ray fluorescence for chemical imaging of trace elements and relevant molecular structures directly in neurons
Nadja Gustavsson, Agnes Paulus, Isak Martinsson, Anders Engdahl, Kadda Medjoubi, et al.
Published. 2021, 10(8) : 1536-1545 doi: 10.1038/s41377-021-00590-x
Alzheimer's disease (AD) is the most common cause of dementia, costing about 1% of the global economy. Failures of clinical trials targeting amyloid-β protein (Aβ), a key trigger of AD, have been explained by drug inefficiency regardless of the mechanisms of amyloid neurotoxicity, which are very difficult to address by available technologies. Here, we combine two imaging modalities that stand at opposite ends of the electromagnetic spectrum, and therefore, can be used as complementary tools to assess structural and chemical information directly in a single neuron. Combining label-free super-resolution microspectroscopy for sub-cellular imaging based on novel optical photothermal infrared (O-PTIR) and synchrotron-based X-ray fluorescence (S-XRF) nano-imaging techniques, we capture elemental distribution and fibrillary forms of amyloid-β proteins in the same neurons at an unprecedented resolution. Our results reveal that in primary AD-like neurons, iron clusters co-localize with elevated amyloid β-sheet structures and oxidized lipids. Overall, our O-PTIR/S-XRF results motivate using high-resolution multimodal microspectroscopic approaches to understand the role of molecular structures and trace elements within a single neuronal cell.
DiLFM: an artifact-suppressed and noise-robust light-field microscopy through dictionary learning
Yuanlong Zhang, Bo Xiong, Yi Zhang, Zhi Lu, Jiamin Wu, et al.
Published. 2021, 10(8) : 1546-1557 doi: 10.1038/s41377-021-00587-6
Light field microscopy (LFM) has been widely used for recording 3D biological dynamics at camera frame rate. However, LFM suffers from artifact contaminations due to the illness of the reconstruction problem via naïve Richardson–Lucy (RL) deconvolution. Moreover, the performance of LFM significantly dropped in low-light conditions due to the absence of sample priors. In this paper, we thoroughly analyze different kinds of artifacts and present a new LFM technique termed dictionary LFM (DiLFM) that substantially suppresses various kinds of reconstruction artifacts and improves the noise robustness with an over-complete dictionary. We demonstrate artifact-suppressed reconstructions in scattering samples such as Drosophila embryos and brains. Furthermore, we show our DiLFM can achieve robust blood cell counting in noisy conditions by imaging blood cell dynamic at 100 Hz and unveil more neurons in whole-brain calcium recording of zebrafish with low illumination power in vivo.