2021 Vol. 10, No. 1

Comment on "Efficient full-path optical calculation of scalar and vector diffraction using the Bluestein method"
Yifeng Shao, H. Paul Urbach
Published. 2021, 10(1) : 2-2 doi: 10.1038/s41377-020-00447-9
Reply to Comments on "Efficient full-path optical calculation of scalar and vector diffraction using the Bluestein method"
Yanlei Hu, Zhongyu Wang, Xuewen Wang, Shengyun Ji, Chenchu Zhang, et al.
Published. 2021, 10(1) : 3-4 doi: 10.1038/s41377-020-00448-8
Direct quantification of topological protection in symmetry-protected photonic edge states at telecom wavelengths
Sonakshi Arora, Thomas Bauer, René Barczyk, Ewold Verhagen, L. Kuipers
Published. 2021, 10(1) : 5-11 doi: 10.1038/s41377-020-00458-6
Topological on-chip photonics based on tailored photonic crystals (PhCs) that emulate quantum valley-Hall effects has recently gained widespread interest owing to its promise of robust unidirectional transport of classical and quantum information. We present a direct quantitative evaluation of topological photonic edge eigenstates and their transport properties in the telecom wavelength range using phase-resolved near-field optical microscopy. Experimentally visualizing the detailed sub-wavelength structure of these modes propagating along the interface between two topologically non-trivial mirror-symmetric lattices allows us to map their dispersion relation and differentiate between the contributions of several higher-order Bloch harmonics. Selective probing of forward- and backward-propagating modes as defined by their phase velocities enables direct quantification of topological robustness. Studying near-field propagation in controlled defects allows us to extract upper limits of topological protection in on-chip photonic systems in comparison with conventional PhC waveguides. We find that protected edge states are two orders of magnitude more robust than modes of conventional PhC waveguides. This direct experimental quantification of topological robustness comprises a crucial step toward the application of topologically protected guiding in integrated photonics, allowing for unprecedented error-free photonic quantum networks.
Low-loss optical waveguides made with a high-loss material
Darius Urbonas, Rainer F. Mahrt, Thilo Stöferle
Published. 2021, 10(1) : 12-18 doi: 10.1038/s41377-020-00454-w
For guiding light on a chip, it has been pivotal to use materials and process flows that allow low absorption and scattering. Based on subwavelength gratings, here, we show that it is possible to create broadband, multimode waveguides with very low propagation losses despite using a strongly absorbing material. We perform rigorous coupled-wave analysis and finite-difference time-domain simulations of integrated waveguides that consist of pairs of integrated high-index-contrast gratings. To showcase this concept, we demonstrate guiding of visible light in the wavelength range of 550–650 nm with losses down to 6 dB/cm using silicon gratings that have a material absorption of 13, 000 dB/cm at this wavelength and are fabricated with standard silicon photonics technology. This approach allows us to overcome traditional limits of the various established photonics technology platforms with respect to their suitable spectral range and, furthermore, to mitigate situations where absorbing materials, such as highly doped semiconductors, cannot be avoided because of the need for electrical driving, for example, for amplifiers, lasers and modulators.
Adaptive dynamic range shift (ADRIFT) quantitative phase imaging
Keiichiro Toda, Miu Tamamitsu, Takuro Ideguchi
Published. 2021, 10(1) : 19-28 doi: 10.1038/s41377-020-00435-z
Quantitative phase imaging (QPI) with its high-contrast images of optical phase delay (OPD) maps is often used for label-free single-cell analysis. Contrary to other imaging methods, sensitivity improvement has not been intensively explored because conventional QPI is sensitive enough to observe the surface roughness of a substrate that restricts the minimum measurable OPD. However, emerging QPI techniques that utilize, for example, differential image analysis of consecutive temporal frames, such as mid-infrared photothermal QPI, mitigate the minimum OPD limit by decoupling the static OPD contribution and allow measurement of much smaller OPDs. Here, we propose and demonstrate supersensitive QPI with an expanded dynamic range. It is enabled by adaptive dynamic range shift through a combination of wavefront shaping and dark-field QPI techniques. As a proof-of-concept demonstration, we show dynamic range expansion (sensitivity improvement) of QPI by a factor of 6.6 and its utility in improving the sensitivity of mid-infrared photothermal QPI. This technique can also be applied for wide-field scattering imaging of dynamically changing nanoscale objects inside and outside a biological cell without losing global cellular morphological image information.
Bandwidth limits of luminescent solar concentrators as detectors in free-space optical communication systems
Mark Portnoi, Paul Anthony Haigh, Thomas J. Macdonald, Filip Ambroz, Ivan P. Parkin, et al.
Published. 2021, 10(1) : 29-40 doi: 10.1038/s41377-020-00444-y
Luminescent solar concentrators (LSCs) have recently emerged as a promising receiver technology in free-space optical communications due to their inherent ability to collect light from a wide field-of-view and concentrate it into small areas, thus leading to high optical gains. Several high-speed communication systems integrating LSCs in their detector blocks have already been demonstrated, with the majority of efforts so far being devoted to maximising the received optical power and the system's field-of-view. However, LSCs may pose a severe bottleneck on the bandwidth of such communication channels due to the comparably slow timescale of the fluorescence events involved, a situation further aggravated by the inherent reabsorption in these systems, and yet, an in-depth study into such dynamic effects remains absent in the field. To fill this gap, we have developed a comprehensive analytical solution that delineates the fundamental bandwidth limits of LSCs as optical detectors in arbitrary free-space optical links, and establishes their equivalence with simple RC low-pass electrical circuits. Furthermore, we demonstrate a time-domain Monte Carlo simulation platform, an indispensable tool in the multiparameter optimisation of LSC-based receiver systems. Our work offers vital insight into LSC system dynamic behaviour and paves the way to evaluate the technology for a wide range of applications, including visible light communications, high-speed video recording, and real-time biological imaging, to name a few.
Origins of the long-range exciton diffusion in perovskite nanocrystal films: photon recycling vs exciton hopping
David Giovanni, Marcello Righetto, Qiannan Zhang, Jia Wei Melvin Lim, Sankaran Ramesh, et al.
Published. 2021, 10(1) : 41-49 doi: 10.1038/s41377-020-00443-z
The outstanding optoelectronic performance of lead halide perovskites lies in their exceptional carrier diffusion properties. As the perovskite material dimensionality is reduced to exploit the quantum confinement effects, the disruption to the perovskite lattice, often with insulating organic ligands, raises new questions on the charge diffusion properties. Herein, we report direct imaging of > 1 μm exciton diffusion lengths in CH3NH3PbBr3 perovskite nanocrystal (PNC) films. Surprisingly, the resulting exciton mobilities in these PNC films can reach 10 ± 2 cm2 V−1 s−1, which is counterintuitively several times higher than the carrier mobility in 3D perovskite films. We show that this ultralong exciton diffusion originates from both efficient inter-NC exciton hopping (via Förster energy transfer) and the photon recycling process with a smaller yet significant contribution. Importantly, our study not only sheds new light on the highly debated origins of the excellent exciton diffusion in PNC films but also highlights the potential of PNCs for optoelectronic applications.
Towards high-power, high-coherence, integrated photonic mmWave platform with microcavity solitons
Beichen Wang, Jesse S. Morgan, Keye Sun, Mandana Jahanbozorgi, Zijiao Yang, et al.
Published. 2021, 10(1) : 50-59 doi: 10.1038/s41377-020-00445-x
Millimetre-wave (mmWave) technology continues to draw great interest due to its broad applications in wireless communications, radar, and spectroscopy. Compared to pure electronic solutions, photonic-based mmWave generation provides wide bandwidth, low power dissipation, and remoting through low-loss fibres. However, at high frequencies, two major challenges exist for the photonic system: the power roll-off of the photodiode, and the large signal linewidth derived directly from the lasers. Here, we demonstrate a new photonic mmWave platform combining integrated microresonator solitons and high-speed photodiodes to address the challenges in both power and coherence. The solitons, being inherently mode-locked, are measured to provide 5.8 dB additional gain through constructive interference among mmWave beatnotes, and the absolute mmWave power approaches the theoretical limit of conventional heterodyne detection at 100 GHz. In our free-running system, the soliton is capable of reducing the mmWave linewidth by two orders of magnitude from that of the pump laser. Our work leverages microresonator solitons and high-speed modified uni-traveling carrier photodiodes to provide a viable path to chip-scale, high-power, low-noise, high-frequency sources for mmWave applications.
High-sensitivity nanophotonic sensors with passive trapping of analyte molecules in hot spots
Xianglong Miao, Lingyue Yan, Yun Wu, Peter Q. Liu
Published. 2021, 10(1) : 60-70 doi: 10.1038/s41377-020-00449-7
Nanophotonic resonators can confine light to deep-subwavelength volumes with highly enhanced near-field intensity and therefore are widely used for surface-enhanced infrared absorption spectroscopy in various molecular sensing applications. The enhanced signal is mainly contributed by molecules in photonic hot spots, which are regions of a nanophotonic structure with high-field intensity. Therefore, delivery of the majority of, if not all, analyte molecules to hot spots is crucial for fully utilizing the sensing capability of an optical sensor. However, for most optical sensors, simple and straightforward methods of introducing an aqueous analyte to the device, such as applying droplets or spin-coating, cannot achieve targeted delivery of analyte molecules to hot spots. Instead, analyte molecules are usually distributed across the entire device surface, so the majority of the molecules do not experience enhanced field intensity. Here, we present a nanophotonic sensor design with passive molecule trapping functionality. When an analyte solution droplet is introduced to the sensor surface and gradually evaporates, the device structure can effectively trap most precipitated analyte molecules in its hot spots, significantly enhancing the sensor spectral response and sensitivity performance. Specifically, our sensors produce a reflection change of a few percentage points in response to trace amounts of the amino-acid proline or glucose precipitate with a picogram-level mass, which is significantly less than the mass of a molecular monolayer covering the same measurement area. The demonstrated strategy for designing optical sensor structures may also be applied to sensing nano-particles such as exosomes, viruses, and quantum dots.
Toward optical coherence tomography on a chip: in vivo three-dimensional human retinal imaging using photonic integrated circuit-based arrayed waveguide gratings
Elisabet A. Rank, Ryan Sentosa, Danielle J. Harper, Matthias Salas, Anna Gaugutz, et al.
Published. 2021, 10(1) : 71-85 doi: 10.1038/s41377-020-00450-0
In this work, we present a significant step toward in vivo ophthalmic optical coherence tomography and angiography on a photonic integrated chip. The diffraction gratings used in spectral-domain optical coherence tomography can be replaced by photonic integrated circuits comprising an arrayed waveguide grating. Two arrayed waveguide grating designs with 256 channels were tested, which enabled the first chip-based optical coherence tomography and angiography in vivo three-dimensional human retinal measurements. Design 1 supports a bandwidth of 22 nm, with which a sensitivity of up to 91 dB (830 µW) and an axial resolution of 10.7 µm was measured. Design 2 supports a bandwidth of 48 nm, with which a sensitivity of 90 dB (480 µW) and an axial resolution of 6.5 µm was measured. The silicon nitride-based integrated optical waveguides were fabricated with a fully CMOS-compatible process, which allows their monolithic co-integration on top of an optoelectronic silicon chip. As a benchmark for chip-based optical coherence tomography, tomograms generated by a commercially available clinical spectral-domain optical coherence tomography system were compared to those acquired with on-chip gratings. The similarities in the tomograms demonstrate the significant clinical potential for further integration of optical coherence tomography on a chip system.
Low-loss single-mode hybrid-lattice hollow-core photonic-crystal fibre
Foued Amrani, Jonas H. Osório, Frédéric Delahaye, Fabio Giovanardi, Luca Vincetti, et al.
Published. 2021, 10(1) : 86-97 doi: 10.1038/s41377-020-00457-7
Remarkable recent demonstrations of ultra-low-loss inhibited-coupling (IC) hollow-core photonic-crystal fibres (HCPCFs) established them as serious candidates for next-generation long-haul fibre optics systems. A hindrance to this prospect and also to short-haul applications such as micromachining, where stable and high-quality beam delivery is needed, is the difficulty in designing and fabricating an IC-guiding fibre that combines ultra-low loss, truly robust single-modeness, and polarisation-maintaining operation. The design solutions proposed to date require a trade-off between low loss and truly single-modeness. Here, we propose a novel IC-HCPCF for achieving low-loss and effective single-mode operation. The fibre is endowed with a hybrid cladding composed of a Kagome-tubular lattice (HKT). This new concept of a microstructured cladding allows us to significantly reduce the confinement loss and, at the same time, preserve truly robust single-mode operation. Experimental results show an HKT-IC-HCPCF with a minimum loss of 1.6 dB/km at 1050 nm and a higher-order mode extinction ratio as high as 47.0 dB for a 10 m long fibre. The robustness of the fibre single-modeness is tested by moving the fibre and varying the coupling conditions. The design proposed herein opens a new route for the development of HCPCFs that combine robust ultra-low-loss transmission and single-mode beam delivery and provides new insight into IC guidance.
Dual-shot dynamics and ultimate frequency of all-optical magnetic recording on GdFeCo
Sicong Wang, Chen Wei, Yuanhua Feng, Hongkun Cao, Wenzhe Li, et al.
Published. 2021, 10(1) : 98-105 doi: 10.1038/s41377-020-00451-z
Although photonics presents the fastest and most energy-efficient method of data transfer, magnetism still offers the cheapest and most natural way to store data. The ultrafast and energy-efficient optical control of magnetism is presently a missing technological link that prevents us from reaching the next evolution in information processing. The discovery of all-optical magnetization reversal in GdFeCo with the help of 100 fs laser pulses has further aroused intense interest in this compelling problem. Although the applicability of this approach to high-speed data processing depends vitally on the maximum repetition rate of the switching, the latter remains virtually unknown. Here we experimentally unveil the ultimate frequency of repetitive all-optical magnetization reversal through time-resolved studies of the dual-shot magnetization dynamics in Gd27Fe63.87Co9.13. Varying the intensities of the shots and the shot-to-shot separation, we reveal the conditions for ultrafast writing and the fastest possible restoration of magnetic bits. It is shown that although magnetic writing launched by the first shot is completed after 100 ps, a reliable rewriting of the bit by the second shot requires separating the shots by at least 300 ps. Using two shots partially overlapping in space and minimally separated by 300 ps, we demonstrate an approach for GHz magnetic writing that can be scaled down to sizes below the diffraction limit.
Ultra-low-loss on-chip zero-index materials
Tian Dong, Jiujiu Liang, Sarah Camayd-Muñoz, Yueyang Liu, Haoning Tang, et al.
Published. 2021, 10(1) : 106-114 doi: 10.1038/s41377-020-00436-y
Light travels in a zero-index medium without accumulating a spatial phase, resulting in perfect spatial coherence. Such coherence brings several potential applications, including arbitrarily shaped waveguides, phase-mismatch-free nonlinear propagation, large-area single-mode lasers, and extended superradiance. A promising platform to achieve these applications is an integrated Dirac-cone material that features an impedance-matched zero index. Although an integrated Dirac-cone material eliminates ohmic losses via its purely dielectric structure, it still entails out-of-plane radiation loss, limiting its applications to a small scale. We design an ultra-low-loss integrated Dirac cone material by achieving destructive interference above and below the material. The material consists of a square array of low-aspect-ratio silicon pillars embedded in silicon dioxide, featuring easy fabrication using a standard planar process. This design paves the way for leveraging the perfect spatial coherence of large-area zero-index materials in linear, nonlinear, and quantum optics.
Broadband terahertz wave generation from an epsilon-near-zero material
Wenhe Jia, Meng Liu, Yongchang Lu, Xi Feng, Qingwei Wang, et al.
Published. 2021, 10(1) : 115-122 doi: 10.1038/s41377-020-00452-y
Broadband light sources emitting in the terahertz spectral range are highly desired for applications such as noninvasive imaging and spectroscopy. Conventionally, THz pulses are generated by optical rectification in bulk nonlinear crystals with millimetre thickness, with the bandwidth limited by the phase-matching condition. Here we demonstrate broadband THz emission via surface optical rectification from a simple, commercially available 19 nm-thick indium tin oxide (ITO) thin film. We show an enhancement of the generated THz signal when the pump laser is tuned around the epsilon-near-zero (ENZ) region of ITO due to the pump laser field enhancement associated with the ENZ effect. The bandwidth of the THz signal generated from the ITO film can be over 3 THz, unrestricted by the phase-matching condition. This work offers a new possibility for broadband THz generation in a subwavelength thin film made of an ENZ material, with emerging physics not found in existing nonlinear crystals.
Ensemble learning of diffractive optical networks
Md Sadman Sakib Rahman, Jingxi Li, Deniz Mengu, Yair Rivenson, Aydogan Ozcan
Published. 2021, 10(1) : 123-135 doi: 10.1038/s41377-020-00446-w
A plethora of research advances have emerged in the fields of optics and photonics that benefit from harnessing the power of machine learning. Specifically, there has been a revival of interest in optical computing hardware due to its potential advantages for machine learning tasks in terms of parallelization, power efficiency and computation speed. Diffractive deep neural networks (D2NNs) form such an optical computing framework that benefits from deep learning-based design of successive diffractive layers to all-optically process information as the input light diffracts through these passive layers. D2NNs have demonstrated success in various tasks, including object classification, the spectral encoding of information, optical pulse shaping and imaging. Here, we substantially improve the inference performance of diffractive optical networks using feature engineering and ensemble learning. After independently training 1252 D2NNs that were diversely engineered with a variety of passive input filters, we applied a pruning algorithm to select an optimized ensemble of D2NNs that collectively improved the image classification accuracy. Through this pruning, we numerically demonstrated that ensembles of N = 14 and N = 30 D2NNs achieve blind testing accuracies of 61.14 ± 0.23% and 62.13 ± 0.05%, respectively, on the classification of CIFAR-10 test images, providing an inference improvement of > 16% compared to the average performance of the individual D2NNs within each ensemble. These results constitute the highest inference accuracies achieved to date by any diffractive optical neural network design on the same dataset and might provide a significant leap to extend the application space of diffractive optical image classification and machine vision systems.