2020 Vol. 9, No. 4

News and Views
AI empowered metasurfaces
Shuang Zhang
Published. 2020, 9(4) : 854-857 doi: 10.1038/s41377-020-0332-x
Dynamic metasurfaces are endowed with self-adaptive and learning capabilities, enabling an array of important applications ranging from satellite communications to the monitoring of human health and activities.
Vortex 4.0 on chip
Qing Zhang, Jincheng Ni, Cheng-Wei Qiu
Published. 2020, 9(4) : 858-860 doi: 10.1038/s41377-020-00343-2
The orbital angular momentum (OAM) of light has promising applications, ranging from information multiplexing and high-speed optical communication to computation. Dynamically tunable and switchable vortex microlasers combined with direct photocurrent detection of the topological charges of OAM states have paved unexplored routes for the development and integration of fourth-generation (4.0) vortex technology, potentially on chip.
Stable and luminescent halide perovskite fabricated in water
Guangren Na, Lijun Zhang
Published. 2020, 9(4) : 861-862 doi: 10.1038/s41377-020-0340-x
Lead bromide perovskite nanoparticles are fabricated in the water, which has been recognized previously as a severe source of damage to halide perovskite materials and devices. The perovskite nanoparticles exhibit a high photoluminescence quantum yield and excellent material stability.
On-chip optical vortex-based nanophotonic detectors
Alina Karabchevsky
Published. 2020, 9(4) : 863-864 doi: 10.1038/s41377-020-00359-8
An on-chip optical vortex detector based on spin-Hall nanoslits is reported. The detector is sensitive to the spin of the incoming beam and can simultaneously record the polarization and phase singularity. Although the reported device relies on fast decaying surface plasmons, it represents an important step forward in the development of optical vortexbased integrated photonic devices.
Nonlinear interferometers with correlated photons: toward spectroscopy and imaging with quantum light
Konstantin E. Dorfman
Published. 2020, 9(4) : 865-866 doi: 10.1038/s41377-020-00363-y
A nonlinear optical interferometer based on crystal superlattices has been demonstrated for the first time in a cascade of up to five crystals. The enhanced sensitivity due to quantum interference and correlations makes it a promising tool for sensing, imaging, and spectroscopy.
Direct nanoscopic observation of plasma waves in the channel of a graphene field-effect transistor
Amin Soltani, Frederik Kuschewski, Marlene Bonmann, Andrey Generalov, Andrei Vorobiev, et al.
Published. 2020, 9(4) : 867-873 doi: 10.1038/s41377-020-0321-0
Plasma waves play an important role in many solid-state phenomena and devices. They also become significant in electronic device structures as the operation frequencies of these devices increase. A prominent example is field-effect transistors (FETs), that witness increased attention for application as rectifying detectors and mixers of electromagnetic waves at gigahertz and terahertz frequencies, where they exhibit very good sensitivity even high above the cut-off frequency defined by the carrier transit time. Transport theory predicts that the coupling of radiation at THz frequencies into the channel of an antenna-coupled FET leads to the development of a gated plasma wave, collectively involving the charge carriers of both the two-dimensional electron gas and the gate electrode. In this paper, we present the first direct visualization of these waves. Employing graphene FETs containing a buried gate electrode, we utilize near-field THz nanoscopy at room temperature to directly probe the envelope function of the electric field amplitude on the exposed graphene sheet and the neighboring antenna regions. Mapping of the field distribution documents that wave injection is unidirectional from the source side since the oscillating electrical potentials on the gate and drain are equalized by capacitive shunting. The plasma waves, excited at 2 THz, are overdamped, and their decay time lies in the range of 25–70 fs. Despite this short decay time, the decay length is rather long, i.e., 0.3-0.5 μm, because of the rather large propagation speed of the plasma waves, which is found to lie in the range of 3.5–7 × 106 m/s, in good agreement with theory. The propagation speed depends only weakly on the gate voltage swing and is consistent with the theoretically predicted \begin{document}$ \frac{1}{4}$\end{document} power law.
Reversing abnormal hole localization in high-Al-content AlGaN quantum well to enhance deep ultraviolet emission by regulating the orbital state coupling
Li Chen, Wei Lin, Huiqiong Wang, Jinchai Li, Junyong Kang
Published. 2020, 9(4) : 874-881 doi: 10.1038/s41377-020-00342-3
AlGaN has attracted considerable interest for ultraviolet (UV) applications. With the development of UV optoelectronic devices, abnormal carrier confinement behaviour has been observed for c-plane-oriented AlGaN quantum wells (QWs) with high Al content. Because of the dispersive crystal field split-off hole band (CH band) composed of pz orbitals, the abnormal confinement becomes the limiting factor for efficient UV light emission. This observation differs from the widely accepted concept that confinement of carriers at the lowest quantum level is more pronounced than that at higher quantum levels, which has been an established conclusion for conventional continuous potential wells. In particular, orientational pz orbitals are sensitive to the confinement direction in line with the conducting direction, which affects the orbital intercoupling. In this work, models of Al0.75Ga0.25N/AlN QWs constructed with variable lattice orientations were used to investigate the orbital intercoupling among atoms between the well and barrier regions. Orbital engineering of QWs was implemented by changing the orbital state confinement, with the well plane inclined from 0° to 90° at a step of 30° (referred to the c plane). The barrier potential and transition rate at the band edge were enhanced through this orbital engineering. The concept of orbital engineering was also demonstrated through the construction of inclined QW planes on semi- and nonpolar planes implemented in microrods with pyramid-shaped tops. The higher emission intensity from the QWs on the nonpolar plane compared with those on the polar plane was confirmed via localized cathodoluminescence (CL) maps.
Historical Review
Ten years of spasers and plasmonic nanolasers
Shaimaa I. Azzam, Alexander V. Kildishev, Ren-Min Ma, Cun-Zheng Ning, Rupert Oulton, et al.
Published. 2020, 9(4) : 882-902 doi: 10.1038/s41377-020-0319-7
Ten years ago, three teams experimentally demonstrated the first spasers, or plasmonic nanolasers, after the spaser concept was first proposed theoretically in 2003. An overview of the significant progress achieved over the last 10 years is presented here, together with the original context of and motivations for this research. After a general introduction, we first summarize the fundamental properties of spasers and discuss the major motivations that led to the first demonstrations of spasers and nanolasers. This is followed by an overview of crucial technological progress, including lasing threshold reduction, dynamic modulation, room-temperature operation, electrical injection, the control and improvement of spasers, the array operation of spasers, and selected applications of single-particle spasers. Research prospects are presented in relation to several directions of development, including further miniaturization, the relationship with Bose–Einstein condensation, novel spaser-based interconnects, and other features of spasers and plasmonic lasers that have yet to be realized or challenges that are still to be overcome.
Optical RAM and integrated optical memories: a survey
Theoni Alexoudi, George Theodore Kanellos, Nikos Pleros
Published. 2020, 9(4) : 903-918 doi: 10.1038/s41377-020-0325-9
The remarkable achievements in the area of integrated optical memories and optical random access memories (RAMs) together with the rapid adoption of optical interconnects in the Datacom and Computercom industries introduce a new perspective for information storage directly in the optical domain, enabling fast access times, increased bandwidth and transparent cooperation with optical interconnect lines. This article reviews state-of-the-art integrated optical memory technologies and optical RAM cell demonstrations describing the physical mechanisms of several key devices along with their performance metrics in terms of their energy, speed and footprint. Novel applications are outlined, concluding with the scaling challenges to be addressed toward allowing light to serve as both a data-carrying and data-storage medium.
Mini-LED, Micro-LED and OLED displays: present status and future perspectives
Yuge Huang, En-Lin Hsiang, Ming-Yang Deng, Shin-Tson Wu
Published. 2020, 9(4) : 919-934 doi: 10.1038/s41377-020-0341-9
Presently, liquid crystal displays (LCDs) and organic light-emitting diode (OLED) displays are two dominant flat panel display technologies. Recently, inorganic mini-LEDs (mLEDs) and micro-LEDs (μLEDs) have emerged by significantly enhancing the dynamic range of LCDs or as sunlight readable emissive displays. "mLED, OLED, or μLED: who wins?" is a heated debatable question. In this review, we conduct a comprehensive analysis on the material properties, device structures, and performance of mLED/μLED/OLED emissive displays and mLED backlit LCDs. We evaluate the power consumption and ambient contrast ratio of each display in depth and systematically compare the motion picture response time, dynamic range, and adaptability to flexible/transparent displays. The pros and cons of mLED, OLED, and μLED displays are analysed, and their future perspectives are discussed.
Simple experimental procedures to distinguish photothermal from hot-carrier processes in plasmonics
Guillaume Baffou, Ivan Bordacchini, Andrea Baldi, Romain Quidant
Published. 2020, 9(4) : 935-950 doi: 10.1038/s41377-020-00345-0
Light absorption and scattering of plasmonic metal nanoparticles can lead to non-equilibrium charge carriers, intense electromagnetic near-fields, and heat generation, with promising applications in a vast range of fields, from chemical and physical sensing to nanomedicine and photocatalysis for the sustainable production of fuels and chemicals. Disentangling the relative contribution of thermal and non-thermal contributions in plasmon-driven processes is, however, difficult. Nanoscale temperature measurements are technically challenging, and macroscale experiments are often characterized by collective heating effects, which tend to make the actual temperature increase unpredictable. This work is intended to help the reader experimentally detect and quantify photothermal effects in plasmon-driven chemical reactions, to discriminate their contribution from that due to photochemical processes and to cast a critical eye on the current literature. To this aim, we review, and in some cases propose, seven simple experimental procedures that do not require the use of complex or expensive thermal microscopy techniques. These proposed procedures are adaptable to a wide range of experiments and fields of research where photothermal effects need to be assessed, such as plasmonic-assisted chemistry, heterogeneous catalysis, photovoltaics, biosensing, and enhanced molecular spectroscopy.
Recent advances in 2D, 3D and higher-order topological photonics
Minkyung Kim, Zubin Jacob, Junsuk Rho
Published. 2020, 9(4) : 951-980 doi: 10.1038/s41377-020-0331-y
Over the past decade, topology has emerged as a major branch in broad areas of physics, from atomic lattices to condensed matter. In particular, topology has received significant attention in photonics because light waves can serve as a platform to investigate nontrivial bulk and edge physics with the aid of carefully engineered photonic crystals and metamaterials. Simultaneously, photonics provides enriched physics that arises from spin-1 vectorial electromagnetic fields. Here, we review recent progress in the growing field of topological photonics in three parts. The first part is dedicated to the basics of topological band theory and introduces various two-dimensional topological phases. The second part reviews three-dimensional topological phases and numerous approaches to achieve them in photonics. Last, we present recently emerging fields in topological photonics that have not yet been reviewed. This part includes topological degeneracies in nonzero dimensions, unidirectional Maxwellian spin waves, higher-order photonic topological phases, and stacking of photonic crystals to attain layer pseudospin. In addition to the various approaches for realizing photonic topological phases, we also discuss the interaction between light and topological matter and the efforts towards practical applications of topological photonics.
Original Articles
Symmetrically dispersed spectroscopic single-molecule localization microscopy
Ki-Hee Song, Yang Zhang, Benjamin Brenner, Cheng Sun, Hao F. Zhang
Published. 2020, 9(4) : 981-990 doi: 10.1038/s41377-020-0333-9
Spectroscopic single-molecule localization microscopy (sSMLM) was used to achieve simultaneous imaging and spectral analysis of single molecules for the first time. Current sSMLM fundamentally suffers from a reduced photon budget because the photons from individual stochastic emissions are divided into spatial and spectral channels. Therefore, both spatial localization and spectral analysis only use a portion of the total photons, leading to reduced precisions in both channels. To improve the spatial and spectral precisions, we present symmetrically dispersed sSMLM, or SDsSMLM, to fully utilize all photons from individual stochastic emissions in both spatial and spectral channels. SDsSMLM achieved 10-nm spatial and 0.8-nm spectral precisions at a total photon budget of 1000. Compared with the existing sSMLM using a 1:3 splitting ratio between spatial and spectral channels, SDsSMLM improved the spatial and spectral precisions by 42% and 10%, respectively, under the same photon budget. We also demonstrated multicolour imaging of fixed cells and three-dimensional single-particle tracking using SDsSMLM. SDsSMLM enables more precise spectroscopic single-molecule analysis in broader cell biology and material science applications.
At-will chromatic dispersion by prescribing light trajectories with cascaded metasurfaces
Andrew McClung, Mahdad Mansouree, Amir Arbabi
Published. 2020, 9(4) : 991-999 doi: 10.1038/s41377-020-0335-7
Chromatic dispersion spatially separates white light into colours, producing rainbows and similar effects. Detrimental to imaging but essential to spectroscopy, chromatic dispersion is the result of material properties in refractive optics and is considered an inherent characteristic of diffractive devices such as gratings and flat lenses. Here, we present a fundamental relation connecting an optical system's dispersion to the trajectories light takes through it and show that arbitrary control over dispersion may be achieved by prescribing specific trajectories, even in diffractive systems. Using cascaded metasurfaces (2D arrays of sub-micron scatterers) to direct light along predetermined trajectories, we present an achromatic twisted metalens and experimentally demonstrate beam deflectors with arbitrary dispersion. This new insight and design approach usher in a new class of optical systems with wide-ranging applications.
On-chip plasmonic spin-Hall nanograting for simultaneously detecting phase and polarization singularities
Fu Feng, Guangyuan Si, Changjun Min, Xiaocong Yuan, Michael Somekh
Published. 2020, 9(4) : 1000-1008 doi: 10.1038/s41377-020-0330-z
Phase and polarization singularities are important degrees of freedom for electromagnetic field manipulation. Detecting these singularities is essential for modern optics, but it is still a challenge, especially in integrated optical systems. In this paper, we propose an on-chip plasmonic spin-Hall nanograting structure that simultaneously detects both the polarization and phase singularities of the incident cylindrical vortex vector beam (CVVB). The nanograting is symmetry-breaking with different periods for the upper and lower parts, which enables the unidirectional excitation of the surface plasmon polariton depending on the topological charge of the incident optical vortex beam. Additionally, spin-Hall meta-slits are integrated onto the grating so that the structure has a chiral response for polarization detection. We demonstrate theoretically and experimentally that the designed structure fully discriminates both the topological charges and polarization states of the incident beam simultaneously. The proposed structure has great potential in compact integrated photonic circuits.
Common-path interferometric label-free protein sensing with resonant dielectric nanostructures
Isabel Barth, Donato Conteduca, Christopher Reardon, Steven Johnson, Thomas F. Krauss
Published. 2020, 9(4) : 1009-1017 doi: 10.1038/s41377-020-0336-6
Research toward photonic biosensors for point-of-care applications and personalized medicine is driven by the need for high-sensitivity, low-cost, and reliable technology. Among the most sensitive modalities, interferometry offers particularly high performance, but typically lacks the required operational simplicity and robustness. Here, we introduce a common-path interferometric sensor based on guided-mode resonances to combine high performance with inherent stability. The sensor exploits the simultaneous excitation of two orthogonally polarized modes, and detects the relative phase change caused by biomolecular binding on the sensor surface. The wide dynamic range of the sensor, which is essential for fabrication and angle tolerance, as well as versatility, is controlled by integrating multiple, tuned structures in the field of view. This approach circumvents the trade-off between sensitivity and dynamic range, typical of other phase-sensitive modalities, without increasing complexity. Our sensor enables the challenging label-free detection of procalcitonin, a small protein (13 kDa) and biomarker for infection, at the clinically relevant concentration of 1 pg mL−1, with a signal-to-noise ratio of 35. This result indicates the utility for an exemplary application in antibiotic guidance, and opens possibilities for detecting further clinically or environmentally relevant small molecules with an intrinsically simple and robust sensing modality.
Electrically focus-tuneable ultrathin lens for high-resolution square subpixels
Sehong Park, Gilho Lee, Byeongho Park, Youngho Seo, Chae bin Park, et al.
Published. 2020, 9(4) : 1018-1030 doi: 10.1038/s41377-020-0329-5
Owing to the tremendous demands for high-resolution pixel-scale thin lenses in displays, we developed a graphene-based ultrathin square subpixel lens (USSL) capable of electrically tuneable focusing (ETF) with a performance competitive with that of a typical mechanical refractive lens. The fringe field due to a voltage bias in the graphene proves that our ETF-USSL can focus light onto a single point regardless of the wavelength of the visible light—by controlling the carriers at the Dirac point using radially patterned graphene layers, the focal length of the planar structure can be adjusted without changing the curvature or position of the lens. A high focusing efficiency of over 60% at a visible wavelength of 405 nm was achieved with a lens thickness of < 13 nm, and a change of 19.42% in the focal length with a 9% increase in transmission was exhibited under a driving voltage. This design is first presented as an ETF-USSL that can be controlled in pixel units of flat panel displays for visible light. It can be easily applied as an add-on to high resolution, slim displays and provides a new direction for the application of multifunctional autostereoscopic displays.
Ghost spintronic THz-emitter-array microscope
Si-Chao Chen, Zheng Feng, Jiang Li, Wei Tan, Liang-Hui Du, et al.
Published. 2020, 9(4) : 1031-1039 doi: 10.1038/s41377-020-0338-4
Terahertz (THz) waves show great potential in nondestructive testing, biodetection and cancer imaging. Despite recent progress in THz wave near-field probes/apertures enabling raster scanning of an object's surface, an efficient, nonscanning, noninvasive, deep subdiffraction imaging technique remains challenging. Here, we demonstrate THz near-field microscopy using a reconfigurable spintronic THz emitter array (STEA) based on the computational ghost imaging principle. By illuminating an object with the reconfigurable STEA followed by computing the correlation, we can reconstruct an image of the object with deep subdiffraction resolution. By applying an external magnetic field, in-line polarization rotation of the THz wave is realized, making the fused image contrast polarization-free. Time-of-flight (TOF) measurements of coherent THz pulses further enable objects at different distances or depths to be resolved. The demonstrated ghost spintronic THz-emitter-array microscope (GHOSTEAM) is a radically novel imaging tool for THz near-field imaging, opening paradigm-shifting opportunities for nonintrusive label-free bioimaging in a broadband frequency range from 0.1 to 30 THz (namely, 3.3–1000 cm−1).
Optical shaping of the polarization anisotropy in a laterally coupled quantum dot dimer
Heedae Kim, Kwangseuk Kyhm, Robert A. Taylor, Jong Su Kim, Jin Dong Song, et al.
Published. 2020, 9(4) : 1040-1049 doi: 10.1038/s41377-020-0339-3
We find that the emission from laterally coupled quantum dots is strongly polarized along the coupled direction [1\begin{document}$\bar 1$\end{document}0], and its polarization anisotropy can be shaped by changing the orientation of the polarized excitation. When the nonresonant excitation is linearly polarized perpendicular to the coupled direction [110], excitons (X1 and X2) and local biexcitons (X1X1 and X2X2) from the two separate quantum dots (QD1 and QD2) show emission anisotropy with a small degree of polarization (10%). On the other hand, when the excitation polarization is parallel to the coupled direction [1\begin{document}$\bar 1$\end{document}0], the polarization anisotropy of excitons, local biexcitons, and coupled biexcitons (X1X2) is enhanced with a degree of polarization of 74%. We also observed a consistent anisotropy in the time-resolved photoluminescence. The decay rate of the polarized photoluminescence intensity along the coupled direction is relatively high, but the anisotropic decay rate can be modified by changing the orientation of the polarized excitation. An energy difference is also observed between the polarized emission spectra parallel and perpendicular to the coupled direction, and it increases by up to three times by changing the excitation polarization orientation from [110] to [1\begin{document}$\bar 1$\end{document}0]. These results suggest that the dipole–dipole interaction across the two separate quantum dots is mediated and that the anisotropic wavefunctions of the excitons and biexcitons are shaped by the excitation polarization.
Malus-metasurface-assisted polarization multiplexing
Liangui Deng, Juan Deng, Zhiqiang Guan, Jin Tao, Yang Chen, et al.
Published. 2020, 9(4) : 1050-1058 doi: 10.1038/s41377-020-0327-7
Polarization optics plays a pivotal role in diffractive, refractive, and emerging flat optics, and has been widely employed in contemporary optical industries and daily life. Advanced polarization manipulation leads to robust control of the polarization direction of light. Nevertheless, polarization control has been studied largely independent of the phase or intensity of light. Here, we propose and experimentally validate a Malus-metasurface-assisted paradigm to enable simultaneous and independent control of the intensity and phase properties of light simply by polarization modulation. The orientation degeneracy of the classical Malus's law implies a new degree of freedom and enables us to establish a one-to-many mapping strategy for designing anisotropic plasmonic nanostructures to engineer the Pancharatnam–Berry phase profile, while keeping the continuous intensity modulation unchanged. The proposed Malus metadevice can thus generate a near-field greyscale pattern, and project an independent far-field holographic image using an ultrathin and single-sized metasurface. This concept opens up distinct dimensions for conventional polarization optics, which allows one to merge the functionality of phase manipulation into an amplitude-manipulation-assisted optical component to form a multifunctional nano-optical device without increasing the complexity of the nanostructures. It can empower advanced applications in information multiplexing and encryption, anti-counterfeiting, dual-channel display for virtual/augmented reality, and many other related fields.
Optoelectronic parametric oscillator
Tengfei Hao, Qizhuang Cen, Shanhong Guan, Wei Li, Yitang Dai, et al.
Published. 2020, 9(4) : 1059-1068 doi: 10.1038/s41377-020-0337-5
Oscillators are one of the key elements in various applications as a signal source to generate periodic oscillations. Among them, an optical parametric oscillator (OPO) is a driven harmonic oscillator based on parametric frequency conversion in an optical cavity, which has been widely investigated as a coherent light source with an extremely wide wavelength tuning range. However, steady oscillation in an OPO is confined by the cavity delay, which leads to difficulty in frequency tuning, and the frequency tuning is discrete with the minimum tuning step determined by the cavity delay. Here, we propose and demonstrate a counterpart of an OPO in the optoelectronic domain, i.e., an optoelectronic parametric oscillator (OEPO) based on parametric frequency conversion in an optoelectronic cavity to generate microwave signals. Owing to the unique energy-transition process in the optoelectronic cavity, the phase evolution in the OEPO is not linear, leading to steady single-mode oscillation or multimode oscillation that is not bounded by the cavity delay. Furthermore, the multimode oscillation in the OEPO is stable and easy to realize owing to the phase control of the parametric frequency-conversion process in the optoelectronic cavity, while stable multimode oscillation is difficult to achieve in conventional oscillators such as an optoelectronic oscillator (OEO) or an OPO due to the mode-hopping and mode-competition effect. The proposed OEPO has great potential in applications such as microwave signal generation, oscillator-based computation, and radio-frequency phase-stable transfer.
Understanding and tuning blue-to-near-infrared photon cutting by the Tm3+/Yb3+ couple
Dechao Yu, Ting Yu, Arnoldus J. van Bunningen, Qinyuan Zhang, Andries Meijerink, et al.
Published. 2020, 9(4) : 1069-1077 doi: 10.1038/s41377-020-00346-z
Lanthanide-based photon-cutting phosphors absorb high-energy photons and 'cut' them into multiple smaller excitation quanta. These quanta are subsequently emitted, resulting in photon-conversion efficiencies exceeding unity. The photon-cutting process relies on energy transfer between optically active lanthanide ions doped in the phosphor. However, it is not always easy to determine, let alone predict, which energy-transfer mechanisms are operative in a particular phosphor. This makes the identification and design of new promising photon-cutting phosphors difficult. Here we unravel the possibility of using the Tm3+/Yb3+ lanthanide couple for photon cutting. We compare the performance of this couple in four different host materials. Cooperative energy transfer from Tm3+ to Yb3+ would enable blue-to-near-infrared conversion with 200% efficiency. However, we identify phonon-assisted cross-relaxation as the dominant Tm3+-to-Yb3+ energy-transfer mechanism in YBO3, YAG, and Y2O3. In NaYF4, in contrast, the low maximum phonon energy renders phonon-assisted cross-relaxation impossible, making the desired cooperative mechanism the dominant energy-transfer pathway. Our work demonstrates that previous claims of high photon-cutting efficiencies obtained with the Tm3+/Yb3+ couple must be interpreted with care. Nevertheless, the Tm3+/Yb3+ couple is potentially promising, but the host material—more specifically, its maximum phonon energy—has a critical effect on the energy-transfer mechanisms and thereby on the photon-cutting performance.
Low-threshold topological nanolasers based on the second-order corner state
Weixuan Zhang, Xin Xie, Huiming Hao, Jianchen Dang, Shan Xiao, et al.
Published. 2020, 9(4) : 1078-1083 doi: 10.1038/s41377-020-00352-1
Topological lasers are immune to imperfections and disorder. They have been recently demonstrated based on many kinds of robust edge states, which are mostly at the microscale. The realization of 2D on-chip topological nanolasers with a small footprint, a low threshold and high energy efficiency has yet to be explored. Here, we report the first experimental demonstration of a topological nanolaser with high performance in a 2D photonic crystal slab. A topological nanocavity is formed utilizing the Wannier-type 0D corner state. Lasing behaviour with a low threshold of approximately 1 µW and a high spontaneous emission coupling factor of 0.25 is observed with quantum dots as the active material. Such performance is much better than that of topological edge lasers and comparable to that of conventional photonic crystal nanolasers. Our experimental demonstration of a low-threshold topological nanolaser will be of great significance to the development of topological nanophotonic circuitry for the manipulation of photons in classical and quantum regimes.
Dynamic conjugate F-SHARP microscopy
Ioannis N. Papadopoulos, Jean-Sebastien Jouhanneau, Naoya Takahashi, David Kaplan, Matthew Larkum, et al.
Published. 2020, 9(4) : 1084-1091 doi: 10.1038/s41377-020-00348-x
Optical microscopy is an indispensable tool in biomedical sciences, but its reach in deep tissues is limited due to aberrations and scattering. This problem can be overcome by wavefront-shaping techniques, albeit at limited fields of view (FOVs). Inspired by astronomical imaging, conjugate wavefront shaping can lead to an increased field of view in microscopy, but this correction is limited to a set depth and cannot be dynamically adapted. Here, we present a conjugate wavefront-shaping scheme based on focus scanning holographic aberration probing (F-SHARP). We combine it with a compact implementation that can be readily adapted to a variety of commercial and home-built two-photon microscopes. We demonstrate the power of the method by imaging with high resolution over extended FOV (> 80 µm) deeper than 400 μm inside a mouse brain through a thinned skull.
Modulating the optical and electrical properties of MAPbBr3 single crystals via voltage regulation engineering and application in memristors
Jun Xing, Chen Zhao, Yuting Zou, Wenchi Kong, Zhi Yu, et al.
Published. 2020, 9(4) : 1092-1102 doi: 10.1038/s41377-020-00349-w
Defect density is one of the most significant characteristics of perovskite single crystals (PSCs) that determines their optical and electrical properties, but few strategies are available to tune this property. Here, we demonstrate that voltage regulation is an efficient method to tune defect density, as well as the optical and electrical properties of PSCs. A three-step carrier transport model of MAPbBr3 PSCs is proposed to explore the defect regulation mechanism and carrier transport dynamics via an applied bias. Dynamic and steady-state photoluminescence measurements subsequently show that the surface defect density, average carrier lifetime, and photoluminescence intensity can be efficiently tuned by the applied bias. In particular, when the regulation voltage is 20 V (electrical poling intensity is 0.167 V μm−1), the surface defect density of MAPbBr3 PSCs is reduced by 24.27%, the carrier lifetime is prolonged by 32.04%, and the PL intensity is increased by 112.96%. Furthermore, a voltage-regulated MAPbBr3 PSC memristor device shows an adjustable multiresistance, weak ion migration effect and greatly enhanced device stability. Voltage regulation is a promising engineering technique for developing advanced perovskite optoelectronic devices.
Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators
Wenjuan Zhu, Wenbo Ma, Yirong Su, Zeng Chen, Xinya Chen, et al.
Published. 2020, 9(4) : 1103-1112 doi: 10.1038/s41377-020-00353-0
X-rays are widely used in probing inside information nondestructively, enabling broad applications in the medical radiography and electronic industries. X-ray imaging based on emerging lead halide perovskite scintillators has received extensive attention recently. However, the strong self-absorption, relatively low light yield and lead toxicity of these perovskites restrict their practical applications. Here, we report a series of nontoxic double-perovskite scintillators of Cs2Ag0.6Na0.4In1-yBiyCl6. By controlling the content of the heavy atom Bi3+, the X-ray absorption coefficient, radiative emission efficiency, light yield and light decay were manipulated to maximise the scintillator performance. A light yield of up to 39, 000 ± 7000 photons/MeV for Cs2Ag0.6Na0.4In0.85Bi0.15Cl6 was obtained, which is much higher than that for the previously reported lead halide perovskite colloidal CsPbBr3 (21, 000 photons/MeV). The large Stokes shift between the radioluminescence (RL) and absorption spectra benefiting from self-trapped excitons (STEs) led to a negligible self-absorption effect. Given the high light output and fast light decay of this scintillator, static X-ray imaging was attained under an extremely low dose of ~1 μGyair, and dynamic X-ray imaging of finger bending without a ghosting effect was demonstrated under a low-dose rate of 47.2 μGyair s−1. After thermal treatment at 85 ℃ for 50 h followed by X-ray irradiation for 50 h in ambient air, the scintillator performance in terms of the RL intensity and X-ray image quality remained almost unchanged. Our results shed light on exploring highly competitive scintillators beyond the scope of lead halide perovskites, not only for avoiding toxicity but also for better performance.
A plasmonic route for the integrated wireless communication of subdiffraction-limited signals
Hao Chi Zhang, Le Peng Zhang, Pei Hang He, Jie Xu, Cheng Qian, et al.
Published. 2020, 9(4) : 1113-1121 doi: 10.1038/s41377-020-00355-y
Perfect lenses, superlenses and time-reversal mirrors can support and spatially separate evanescent waves, which is the basis for detecting subwavelength information in the far field. However, the inherent limitations of these methods have prevented the development of systems to dynamically distinguish subdiffraction-limited signals. Utilizing the physical merits of spoof surface plasmon polaritons (SPPs), we demonstrate that subdiffraction-limited signals can be transmitted on planar integrated SPP channels with low loss, low channel interference, and high gain and can be radiated with a very low environmental sensitivity. Furthermore, we show how deep subdiffraction-limited signals that are spatially coupled can be distinguished after line-of-sight wireless transmission. For a visualized demonstration, we realize the high-quality wireless communication of two movies on subwavelength channels over the line of sight in real time using our plasmonic scheme, showing significant advantages over the conventional methods.
Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications
Xinrong Zong, Huamin Hu, Gang Ouyang, Jingwei Wang, Run Shi, et al.
Published. 2020, 9(4) : 1122-1129 doi: 10.1038/s41377-020-00356-x
Mid-infrared (MIR) light-emitting devices play a key role in optical communications, thermal imaging, and material analysis applications. Two-dimensional (2D) materials offer a promising direction for next-generation MIR devices owing to their exotic optical properties, as well as the ultimate thickness limit. More importantly, van der Waals heterostructures—combining the best of various 2D materials at an artificial atomic level—provide many new possibilities for constructing MIR light-emitting devices of large tuneability and high integration. Here, we introduce a simple but novel van der Waals heterostructure for MIR light-emission applications built from thin-film BP and transition metal dichalcogenides (TMDCs), in which BP acts as an MIR light-emission layer. For BP–WSe2 heterostructures, an enhancement of ~200% in the photoluminescence intensities in the MIR region is observed, demonstrating highly efficient energy transfer in this heterostructure with type-Ⅰ band alignment. For BP–MoS2 heterostructures, a room temperature MIR light-emitting diode (LED) is enabled through the formation of a vertical PN heterojunction at the interface. Our work reveals that the BP–TMDC heterostructure with efficient light emission in the MIR range, either optically or electrically activated, provides a promising platform for infrared light property studies and applications.
Supertransport of excitons in atomically thin organic semiconductors at the 2D quantum limit
Ankur Sharma, Linglong Zhang, Jonathan O. Tollerud, Miheng Dong, Yi Zhu, et al.
Published. 2020, 9(4) : 1130-1142 doi: 10.1038/s41377-020-00347-y
Long-range and fast transport of coherent excitons is important for the development of high-speed excitonic circuits and quantum computing applications. However, most of these coherent excitons have only been observed in some low-dimensional semiconductors when coupled with cavities, as there are large inhomogeneous broadening and dephasing effects on the transport of excitons in their native states in materials. Here, by confining coherent excitons at the 2D quantum limit, we first observed molecular aggregation-enabled 'supertransport' of excitons in atomically thin two-dimensional (2D) organic semiconductors between coherent states, with a measured high effective exciton diffusion coefficient of ~346.9 cm2/s at room temperature. This value is one to several orders of magnitude higher than the values reported for other organic molecular aggregates and low-dimensional inorganic materials. Without coupling to any optical cavities, the monolayer pentacene sample, a very clean 2D quantum system (~1.2 nm thick) with high crystallinity (J-type aggregation) and minimal interfacial states, showed superradiant emission from Frenkel excitons, which was experimentally confirmed by the temperature-dependent photoluminescence (PL) emission, highly enhanced radiative decay rate, significantly narrowed PL peak width and strongly directional in-plane emission. The coherence in monolayer pentacene samples was observed to be delocalised over ~135 molecules, which is significantly larger than the values (a few molecules) observed for other organic thin films. In addition, the supertransport of excitons in monolayer pentacene samples showed highly anisotropic behaviour. Our results pave the way for the development of future high-speed excitonic circuits, fast OLEDs, and other optoelectronic devices.
Monitoring the charge-transfer process in a Nd-doped semiconductor based on photoluminescence and SERS technology
Shuo Yang, Jiacheng Yao, Yingnan Quan, Mingyue Hu, Rui Su, et al.
Published. 2020, 9(4) : 1143-1149 doi: 10.1038/s41377-020-00361-0
Surface-enhanced Raman scattering (SERS) and photoluminescence (PL) are important photoexcitation spectroscopy techniques; however, understanding how to analyze and modulate the relationship between SERS and PL is rather important for enhancing SERS, having a great effect on practical applications. In this work, a charge-transfer (CT) mechanism is proposed to investigate the change and relationships between SERS and PL. Analyzing the change in PL and SERS before and after the adsorption of the probe molecules on Nd-doped ZnO indicates that the unique optical characteristics of Nd3+ ions increase the SERS signal. On the other hand, the observed SERS can be used to explain the cause of PL background reduction. This study demonstrates that modulating the interaction between the probe molecules and the substrate can not only enhance Raman scattering but also reduce the SERS background. Our work also provides a guideline for the investigation of CT as well as a new method for exploring fluorescence quenching.
Early detection and classification of live bacteria using time-lapse coherent imaging and deep learning
Hongda Wang, Hatice Ceylan Koydemir, Yunzhe Qiu, Bijie Bai, Yibo Zhang, et al.
Published. 2020, 9(4) : 1150-1166 doi: 10.1038/s41377-020-00358-9
Early identification of pathogenic bacteria in food, water, and bodily fluids is very important and yet challenging, owing to sample complexities and large sample volumes that need to be rapidly screened. Existing screening methods based on plate counting or molecular analysis present various tradeoffs with regard to the detection time, accuracy/sensitivity, cost, and sample preparation complexity. Here, we present a computational live bacteria detection system that periodically captures coherent microscopy images of bacterial growth inside a 60-mm-diameter agar plate and analyses these time-lapsed holograms using deep neural networks for the rapid detection of bacterial growth and the classification of the corresponding species. The performance of our system was demonstrated by the rapid detection of Escherichia coli and total coliform bacteria (i.e., Klebsiella aerogenes and Klebsiella pneumoniae subsp. pneumoniae) in water samples, shortening the detection time by > 12 h compared to the Environmental Protection Agency (EPA)-approved methods. Using the preincubation of samples in growth media, our system achieved a limit of detection (LOD) of ~1 colony forming unit (CFU)/L in ≤9 h of total test time. This platform is highly cost-effective (~$0.6/test) and has high-throughput with a scanning speed of 24 cm2/min over the entire plate surface, making it highly suitable for integration with the existing methods currently used for bacteria detection on agar plates. Powered by deep learning, this automated and cost-effective live bacteria detection platform can be transformative for a wide range of applications in microbiology by significantly reducing the detection time and automating the identification of colonies without labelling or the need for an expert.
Efficient full-path optical calculation of scalar and vector diffraction using the Bluestein method
Yanlei Hu, Zhongyu Wang, Xuewen Wang, Shengyun Ji, Chenchu Zhang, et al.
Published. 2020, 9(4) : 1167-1177 doi: 10.1038/s41377-020-00362-z
Efficient calculation of the light diffraction in free space is of great significance for tracing electromagnetic field propagation and predicting the performance of optical systems such as microscopy, photolithography, and manipulation. However, existing calculation methods suffer from low computational efficiency and poor flexibility. Here, we present a fast and flexible calculation method for computing scalar and vector diffraction in the corresponding optical regimes using the Bluestein method. The computation time can be substantially reduced to the sub-second level, which is 105 faster than that achieved by the direct integration approach (~hours level) and 102 faster than that achieved by the fast Fourier transform method (~minutes level). The high efficiency facilitates the ultrafast evaluation of light propagation in diverse optical systems. Furthermore, the region of interest and the sampling numbers can be arbitrarily chosen, endowing the proposed method with superior flexibility. Based on these results, full-path calculation of a complex optical system is readily demonstrated and verified by experimental results, laying a foundation for real-time light field analysis for realistic optical implementation such as imaging, laser processing, and optical manipulation.
Giant photothermoelectric effect in silicon nanoribbon photodetectors
Wei Dai, Weikang Liu, Jian Yang, Chao Xu, Alessandro Alabastri, et al.
Published. 2020, 9(4) : 1178-1185 doi: 10.1038/s41377-020-00364-x
The photothermoelectric (PTE) effect enables efficient harvesting of the energy of photogenerated hot carriers and is a promising choice for high-efficiency photoelectric energy conversion and photodetection. Recently, the PTE effect was reported in low-dimensional nanomaterials, suggesting the possibility of optimizing their energy conversion efficiency. Unfortunately, the PTE effect becomes extremely inefficient in low-dimensional nanomaterials, owing to intrinsic disadvantages, such as low optical absorption and immature fabrication methods. In this study, a giant PTE effect was observed in lightly doped p-type silicon nanoribbons caused by photogenerated hot carriers. The open-circuit photovoltage responsivity of the device was 3-4 orders of magnitude higher than those of previously reported PTE devices. The measured photovoltage responses fit very well with the proposed photothermoelectric multiphysics models. This research proposes an application of the PTE effect and a possible method for utilizing hot carriers in semiconductors to significantly improve their photoelectric conversion efficiency.
Transparent inorganic multicolour displays enabled by zinc-based electrochromic devices
Wu Zhang, Haizeng Li, William W. Yu, Abdulhakem Y. Elezzabi
Published. 2020, 9(4) : 1186-1196 doi: 10.1038/s41377-020-00366-9
Electrochromic displays have been the subject of extensive research as a promising colour display technology. The current state-of-the-art inorganic multicolour electrochromic displays utilize nanocavity structures that sacrifice transparency and thus limit their diverse applications. Herein, we demonstrate a transparent inorganic multicolour display platform based on Zn-based electrochromic devices. These devices enable independent operation of top and bottom electrochromic electrodes, thus providing additional configuration flexibility of the devices through the utilization of dual electrochromic layers under the same or different colour states. Zn–sodium vanadium oxide (Zn–SVO) electrochromic displays were assembled by sandwiching Zn between two SVO electrodes, and they could be reversibly switched between multiple colours (orange, amber, yellow, brown, chartreuse and green) while preserving a high optical transparency. These Zn–SVO electrochromic displays represent the most colourful transparent inorganic-based electrochromic displays to date. In addition, the Zn–SVO electrochromic displays possess an open-circuit potential (OCP) of 1.56 V, which enables a self-colouration behaviour and compelling energy retrieval functionality. This study presents a new concept integrating high transparency and high energy efficiency for inorganic multicolour displays.
Nanoparticle meta-grid for enhanced light extraction from light-emitting devices
Debabrata Sikdar, John B. Pendry, Alexei A. Kornyshev
Published. 2020, 9(4) : 1197-1207 doi: 10.1038/s41377-020-00357-w
Based on a developed theory, we show that introducing a meta-grid of sub-wavelength-sized plasmonic nanoparticles (NPs) into existing semiconductor light-emitting-devices (LEDs) can lead to enhanced transmission of light across the LED-chip/encapsulant interface. This results from destructive interference between light reflected from the chip/encapsulant interface and light reflected by the NP meta-grid, which conspicuously increase the efficiency of light extraction from LEDs. The "meta-grid", should be inserted on top of a conventional LED chip within its usual encapsulating packaging. As described by the theory, the nanoparticle composition, size, interparticle spacing, and distance from the LED-chip surface can be tailored to facilitate maximal transmission of light emitted from the chip into its encapsulating layer by reducing the Fresnel loss. The analysis shows that transmission across a typical LED-chip/encapsulant interface at the peak emission wavelength can be boosted up to ~99%, which is otherwise mere ~84% at normal incidence. The scheme could provide improved transmission within the photon escape cone over the entire emission spectrum of an LED. This would benefit energy saving, in addition to increasing the lifetime of LEDs by reducing heating. Potentially, the scheme will be easy to implement and adopt into existing semiconductor-device technologies, and it can be used separately or in conjunction with other methods for mitigating the critical angle loss in LEDs.
Ultrathin monolithic 3D printed optical coherence tomography endoscopy for preclinical and clinical use
Jiawen Li, Simon Thiele, Bryden C. Quirk, Rodney W. Kirk, Johan W. Verjans, et al.
Published. 2020, 9(4) : 1208-1217 doi: 10.1038/s41377-020-00365-w
Preclinical and clinical diagnostics increasingly rely on techniques to visualize internal organs at high resolution via endoscopes. Miniaturized endoscopic probes are necessary for imaging small luminal or delicate organs without causing trauma to tissue. However, current fabrication methods limit the imaging performance of highly miniaturized probes, restricting their widespread application. To overcome this limitation, we developed a novel ultrathin probe fabrication technique that utilizes 3D microprinting to reliably create side-facing freeform micro-optics (< 130 µm diameter) on single-mode fibers. Using this technique, we built a fully functional ultrathin aberration-corrected optical coherence tomography probe. This is the smallest freeform 3D imaging probe yet reported, with a diameter of 0.457 mm, including the catheter sheath. We demonstrated image quality and mechanical flexibility by imaging atherosclerotic human and mouse arteries. The ability to provide microstructural information with the smallest optical coherence tomography catheter opens a gateway for novel minimally invasive applications in disease.
Infrared chemical imaging through non-degenerate two-photon absorption in silicon-based cameras
David Knez, Adam M. Hanninen, Richard C. Prince, Eric O. Potma, Dmitry A. Fishman
Published. 2020, 9(4) : 1218-1227 doi: 10.1038/s41377-020-00369-6
Chemical imaging based on mid-infrared (MIR) spectroscopic contrast is an important technique with a myriad of applications, including biomedical imaging and environmental monitoring. Current MIR cameras, however, lack performance and are much less affordable than mature Si-based devices, which operate in the visible and near-infrared regions. Here, we demonstrate fast MIR chemical imaging through non-degenerate two-photon absorption (NTA) in a standard Si-based charge-coupled device (CCD). We show that wide-field MIR images can be obtained at 100 ms exposure times using picosecond pulse energies of only a few femtojoules per pixel through NTA directly on the CCD chip. Because this on-chip approach does not rely on phase matching, it is alignment-free and does not necessitate complex postprocessing of the images. We emphasize the utility of this technique through chemically selective MIR imaging of polymers and biological samples, including MIR videos of moving targets, physical processes and live nematodes.
Enhancing the graphene photocurrent using surface plasmons and a p-n junction
Di Wang, Andres E. Llacsahuanga Allcca, Ting-Fung Chung, Alexander V. Kildishev, Yong P. Chen, et al.
Published. 2020, 9(4) : 1228-1237 doi: 10.1038/s41377-020-00344-1
The recently proposed concept of graphene photodetectors offers remarkable properties such as unprecedented compactness, ultrabroadband detection, and an ultrafast response speed. However, owing to the low optical absorption of pristine monolayer graphene, the intrinsically low responsivity of graphene photodetectors significantly hinders the development of practical devices. To address this issue, numerous efforts have thus far been made to enhance the light–graphene interaction using plasmonic structures. These approaches, however, can be significantly advanced by leveraging the other critical aspect of graphene photoresponsivity enhancement—electrical junction control. It has been reported that the dominant photocarrier generation mechanism in graphene is the photothermoelectric (PTE) effect. Thus, the two energy conversion mechanisms involved in the graphene photodetection process are light-to-heat and heat-to-electricity conversions. In this work, we propose a meticulously designed device architecture to simultaneously enhance the two conversion efficiencies. Specifically, a gap plasmon structure is used to absorb a major portion of the incident light to induce localized heating, and a pair of split gates is used to produce a p-n junction in graphene to augment the PTE current generation. The gap plasmon structure and the split gates are designed to share common key components so that the proposed device architecture concurrently realizes both optical and electrical enhancements. We experimentally demonstrate the dominance of the PTE effect in graphene photocurrent generation and observe a 25-fold increase in the generated photocurrent compared to the un-enhanced cases. While further photocurrent enhancement can be achieved by applying a DC bias, the proposed device concept shows vast potential for practical applications.
Room-temperature lasing from nanophotonic topological cavities
Daria Smirnova, Aditya Tripathi, Sergey Kruk, Min-Soo Hwang, Ha-Reem Kim, et al.
Published. 2020, 9(4) : 1238-1245 doi: 10.1038/s41377-020-00350-3
The study of topological phases of light underpins a promising paradigm for engineering disorder-immune compact photonic devices with unusual properties. Combined with an optical gain, topological photonic structures provide a novel platform for micro- and nanoscale lasers, which could benefit from nontrivial band topology and spatially localized gap states. Here, we propose and demonstrate experimentally active nanophotonic topological cavities incorporating III–V semiconductor quantum wells as a gain medium in the structure. We observe room-temperature lasing with a narrow spectrum, high coherence, and threshold behaviour. The emitted beam hosts a singularity encoded by a triade cavity mode that resides in the bandgap of two interfaced valley-Hall periodic photonic lattices with opposite parity breaking. Our findings make a step towards topologically controlled ultrasmall light sources with nontrivial radiation characteristics.
Photonic Floquet topological insulators in a fractal lattice
Zhaoju Yang, Eran Lustig, Yaakov Lumer, Mordechai Segev
Published. 2020, 9(4) : 1246-1252 doi: 10.1038/s41377-020-00354-z
We present Floquet fractal topological insulators: photonic topological insulators in a fractal-dimensional lattice consisting of helical waveguides. The helical modulation induces an artificial gauge field and leads to a trivial-to-topological phase transition. The quasi-energy spectrum shows the existence of topological edge states corresponding to real-space Chern number 1. We study the propagation of light along the outer edges of the fractal lattice and find that wavepackets move along the edges without penetrating into the bulk or backscattering even in the presence of disorder. In a similar vein, we find that the inner edges of the fractal lattice also exhibit robust transport when the fractal is of sufficiently high generation. Finally, we find topological edge states that span the circumference of a hybrid half-fractal, half-honeycomb lattice, passing from the edge of the honeycomb lattice to the edge of the fractal structure virtually without scattering, despite the transition from two dimensions to a fractal dimension. Our system offers a realizable experimental platform to study topological fractals and provides new directions for exploring topological physics.
Higher-order topological insulators in synthetic dimensions
Avik Dutt, Momchil Minkov, Ian A. D. Williamson, Shanhui Fan
Published. 2020, 9(4) : 1253-1261 doi: 10.1038/s41377-020-0334-8
Conventional topological insulators support boundary states with dimension one lower than that of the bulk system that hosts them, and these states are topologically protected due to quantized bulk dipole moments. Recently, higher-order topological insulators have been proposed as a way of realizing topological states with dimensions two or more lower than that of the bulk due to the quantization of bulk quadrupole or octupole moments. However, all these proposals as well as experimental realizations have been restricted to real-space dimensions. Here, we construct photonic higher-order topological insulators (PHOTIs) in synthetic dimensions. We show the emergence of a quadrupole PHOTI supporting topologically protected corner modes in an array of modulated photonic molecules with a synthetic frequency dimension, where each photonic molecule comprises two coupled rings. By changing the phase difference of the modulation between adjacent coupled photonic molecules, we predict a dynamical topological phase transition in the PHOTI. Furthermore, we show that the concept of synthetic dimensions can be exploited to realize even higher-order multipole moments such as a fourth-order hexadecapole (16-pole) insulator supporting 0D corner modes in a 4D hypercubic synthetic lattice that cannot be realized in real-space lattices.
Multidimensional synthetic chiral-tube lattices via nonlinear frequency conversion
Kai Wang, Bryn A. Bell, Alexander S. Solntsev, Dragomir N. Neshev, Benjamin J. Eggleton, et al.
Published. 2020, 9(4) : 1262-1271 doi: 10.1038/s41377-020-0299-7
Geometrical dimensionality plays a fundamentally important role in the topological effects arising in discrete lattices. Although direct experiments are limited by three spatial dimensions, the research topic of synthetic dimensions implemented by the frequency degree of freedom in photonics is rapidly advancing. The manipulation of light in these artificial lattices is typically realized through electro-optic modulation; yet, their operating bandwidth imposes practical constraints on the range of interactions between different frequency components. Here we propose and experimentally realize all-optical synthetic dimensions involving specially tailored simultaneous short- and long-range interactions between discrete spectral lines mediated by frequency conversion in a nonlinear waveguide. We realize triangular chiral-tube lattices in three-dimensional space and explore their four-dimensional generalization. We implement a synthetic gauge field with nonzero magnetic flux and observe the associated multidimensional dynamics of frequency combs, all within one physical spatial port. We anticipate that our method will provide a new means for the fundamental study of high-dimensional physics and act as an important step towards using topological effects in optical devices operating in the time and frequency domains.
Photonic amorphous topological insulator
Peiheng Zhou, Gui-Geng Liu, Xin Ren, Yihao Yang, Haoran Xue, et al.
Published. 2020, 9(4) : 1272-1279 doi: 10.1038/s41377-020-00368-7
The current understanding of topological insulators and their classical wave analogs, such as photonic topological insulators, is mainly based on topological band theory. However, standard band theory does not apply to amorphous phases of matter, which are formed by non-crystalline lattices with no long-range positional order but only short-range order, exhibiting unique phenomena such as the glass-to-liquid transition. Here, we experimentally investigate amorphous variants of a Chern number-based photonic topological insulator. By tuning the disorder strength in the lattice, we demonstrate that photonic topological edge states can persist into the amorphous regime prior to the glass-to-liquid transition. After the transition to a liquid-like lattice configuration, the signatures of topological edge states disappear. This interplay between topology and short-range order in amorphous lattices paves the way for new classes of non-crystalline topological photonic bandgap materials.