2020 Vol. 9, No. 2

High-contrast, fast chemical imaging by coherent Raman scattering using a self-synchronized two-colour fibre laser
Cihang Kong, Christian Pilger, Henning Hachmeister, Xiaoming Wei, Tom H. Cheung, et al.
Published. 2020, 9(2) : 254-265 doi: 10.1038/s41377-020-0259-2
Coherent Raman scattering (CRS) microscopy is widely recognized as a powerful tool for tackling biomedical problems based on its chemically specific label-free contrast, high spatial and spectral resolution, and high sensitivity. However, the clinical translation of CRS imaging technologies has long been hindered by traditional solid-state lasers with environmentally sensitive operations and large footprints. Ultrafast fibre lasers can potentially overcome these shortcomings but have not yet been fully exploited for CRS imaging, as previous implementations have suffered from high intensity noise, a narrow tuning range and low power, resulting in low image qualities and slow imaging speeds. Here, we present a novel high-power self-synchronized two-colour pulsed fibre laser that achieves excellent performance in terms of intensity stability (improved by 50 dB), timing jitter (24.3 fs), average power fluctuation (< 0.5%), modulation depth (> 20 dB) and pulse width variation (< 1.8%) over an extended wavenumber range (2700–3550 cm-1). The versatility of the laser source enables, for the first time, high-contrast, fast CRS imaging without complicated noise reduction via balanced detection schemes. These capabilities are demonstrated in this work by imaging a wide range of species such as living human cells and mouse arterial tissues and performing multimodal nonlinear imaging of mouse tail, kidney and brain tissue sections by utilizing second-harmonic generation and two-photon excited fluorescence, which provides multiple optical contrast mechanisms simultaneously and maximizes the gathered information content for biological visualization and medical diagnosis. This work also establishes a general scenario for remodelling existing lasers into synchronized two-colour lasers and thus promotes a wider popularization and application of CRS imaging technologies.
All-optical control of exciton flow in a colloidal quantum well complex
Junhong Yu, Manoj Sharma, Ashma Sharma, Savas Delikanli, Hilmi Volkan Demir, et al.
Published. 2020, 9(2) : 266-273 doi: 10.1038/s41377-020-0262-7
Excitonics, an alternative to romising for processing information since semiconductor electronics is rapidly approaching the end of Moore's law. Currently, the development of excitonic devices, where exciton flow is controlled, is mainly focused on electric-field modulation or exciton polaritons in high-Q cavities. Here, we show an all-optical strategy to manipulate the exciton flow in a binary colloidal quantum well complex through mediation of the Fo?rster resonance energy transfer (FRET) by stimulated emission. In the spontaneous emission regime, FRET naturally occurs between a donor and an acceptor. In contrast, upon stronger excitation, the ultrafast consumption of excitons by stimulated emission effectively engineers the excitonic flow from the donors to the acceptors. Specifically, the acceptors' stimulated emission significantly accelerates the exciton flow, while the donors' stimulated emission almost stops this process. On this basis, a FRET-coupled rate equation model is derived to understand the controllable exciton flow using the density of the excited donors and the unexcited acceptors. The results will provide an effective all-optical route for realizing excitonic devices under room temperature operation.
High-performance silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm
Jingshu Guo, Jiang Li, Chaoyue Liu, Yanlong Yin, Wenhui Wang, et al.
Published. 2020, 9(2) : 274-284 doi: 10.1038/s41377-020-0263-6
Graphene has attracted much attention for the realization of high-speed photodetection for silicon photonics over a wide wavelength range. However, the reported fast graphene photodetectors mainly operate in the 1.55 μm wavelength band. In this work, we propose and realize high-performance waveguide photodetectors based on bolometric/photoconductive effects by introducing an ultrathin wide silicon-graphene hybrid plasmonic waveguide, which enables efficient light absorption in graphene at 1.55 μm and beyond. When operating at 2 μm, the present photodetector has a responsivity of ~70 mA/W and a setup-limited 3 dB bandwidth of > 20 GHz. When operating at 1.55 μm, the present photodetector also works very well with a broad 3 dB bandwidth of > 40 GHz (setup-limited) and a high responsivity of ~0.4 A/W even with a low bias voltage of -0.3 V. This work paves the way for achieving high-responsivity and high-speed silicon–graphene waveguide photodetection in the near/mid-infrared ranges, which has applications in optical communications, nonlinear photonics, and on-chip sensing.
Up to 70 THz bandwidth from an implanted Ge photoconductive antenna excited by a femtosecond Er:fibre laser
Abhishek Singh, Alexej Pashkin, Stephan Winnerl, Malte Welsch, Cornelius Beckh, et al.
Published. 2020, 9(2) : 293-299 doi: 10.1038/s41377-020-0265-4
Phase-stable electromagnetic pulses in the THz frequency range offer several unique capabilities in time-resolved spectroscopy. However, the diversity of their application is limited by the covered spectral bandwidth. In particular, the upper frequency limit of photoconductive emitters - the most widespread technique in THz spectroscopy - reaches only up to 7 THz in the regular transmission mode due to absorption by infrared-active optical phonons. Here, we present ultrabroadband (extending up to 70 THz) THz emission from an Au-implanted Ge emitter that is compatible with mode-locked fibre lasers operating at wavelengths of 1.1 and 1.55 μm with pulse repetition rates of 10 and 20 MHz, respectively. This result opens up the possibility for the development of compact THz photonic devices operating up to multi-THz frequencies that are compatible with Si CMOS technology.
Ultrafast and broadband photodetectors based on a perovskite/organic bulk heterojunction for large-dynamic-range imaging
Chenglong Li, Hailu Wang, Fang Wang, Tengfei Li, Mengjian Xu, et al.
Published. 2020, 9(2) : 285-292 doi: 10.1038/s41377-020-0264-5
Organic-inorganic hybrid perovskite (OIHP) photodetectors that simultaneously achieve an ultrafast response and high sensitivity in the near-infrared (NIR) region are prerequisites for expanding current monitoring, imaging, and optical communication capbilities. Herein, we demonstrate photodetectors constructed by OIHP and an organic bulk heterojunction (BHJ) consisting of a low-bandgap nonfullerene and polymer, which achieve broadband response spectra up to 1 μm with a highest external quantum efficiency of approximately 54% at 850 nm, an ultrafast response speed of 5.6 ns and a linear dynamic range (LDR) of 191 dB. High sensitivity, ultrafast speed and a large LDR are preeminent prerequisites for the practical application of photodetectors. Encouragingly, due to the high-dynamicrange imaging capacity, high-quality visible-NIR actual imaging is achieved by employing the OIHP photodetectors. We believe that state-of-the-art OIHP photodetectors can accelerate the translation of solution-processed photodetector applications from the laboratory to the imaging market.
Enhanced 1.54-μm photo- and electroluminescence based on a perfluorinated Er(Ⅲ) complex utilizing an iridium(Ⅲ) complex as a sensitizer
Hong-Fei Li, Xiao-Qi Liu, Chen Lyu, Jelena Gorbaciova, Li-Li Wen, et al.
Published. 2020, 9(2) : 300-309 doi: 10.1038/s41377-020-0266-3
Advanced 1.5-μm emitting materials that can be used to fabricate electrically driven light-emitting devices have the potential for developing cost-effective light sources for integrated silicon photonics. Sensitized erbium (Er3+) in organic materials can give bright 1.5-μm luminescence and provide a route for realizing 1.5-μm organic light emitting diodes (OLEDs). However, the Er3+ electroluminescence (EL) intensity needs to be further improved for device applications. Herein, an efficient 1.5-μm OLED made from a sensitized organic Er3+ co-doped system is realized, where a "traditional" organic phosphorescent molecule with minimal triplet–triplet annihilation is used as a chromophore sensitizer. The chromophore provides efficient sensitization to a co-doped organic Er3+ complex with a perfluorinated-ligand shell. The large volume can protect the Er3+ 1.5-μm luminescence from vibrational quenching. The average lifetime of the sensitized Er3+ 1.5-μm luminescence reaches ~0.86 ms, with a lifetime component of 2.65 ms, which is by far the longest Er3+ lifetime in a hydrogen-abundant organic environment and can even compete with that obtained in the fully fluorinated organic Er3+ system. The optimal sensitization enhances the Er3+ luminescence by a factor of 1600 even with a high concentration of the phosphorescent molecule, and bright 1.5-μm OLEDs are obtained.
Extreme multiexciton emission from deterministically assembled single-emitter subwavelength plasmonic patch antennas
Amit Raj Dhawan, Cherif Belacel, Juan Uriel Esparza-Villa, Nasilowski Michel, Zhiming Wang, et al.
Published. 2020, 9(2) : 310-318 doi: 10.1038/s41377-020-0269-0
Coupling nano-emitters to plasmonic antennas is a key milestone for the development of nanoscale quantum light sources. One challenge, however, is the precise nanoscale positioning of the emitter in the structure. Here, we present a laser etching protocol that deterministically positions a single colloidal CdSe/CdS core/shell quantum dot emitter inside a subwavelength plasmonic patch antenna with three-dimensional nanoscale control. By exploiting the properties of metal-insulator-metal structures at the nanoscale, the fabricated single-emitter antenna exhibits a very high-Purcell factor (>72) and a brightness enhancement of a factor of 70. Due to the unprecedented quenching of Auger processes and the strong acceleration of the multiexciton emission, more than 4 photons per pulse can be emitted by a single quantum dot, thus increasing the device yield. Our technology can be applied to a wide range of photonic nanostructures and emitters, paving the way for scalable and reliable fabrication of ultracompact light sources.
Opto-thermoelectric pulling of light-absorbing particles
Linhan Lin, Pavana Siddhartha Kollipara, Abhay Kotnala, Taizhi Jiang, Yaoran Liu, et al.
Published. 2020, 9(2) : 319-329 doi: 10.1038/s41377-020-0271-6
Optomechanics arises from the photon momentum and its exchange with low-dimensional objects. It is well known that optical radiation exerts pressure on objects, pushing them along the light path. However, optical pulling of an object against the light path is still a counter-intuitive phenomenon. Herein, we present a general concept of optical pulling-opto-thermoelectric pulling (OTEP)-where the optical heating of a light-absorbing particle using a simple plane wave can pull the particle itself against the light path. This irradiation orientation-directed pulling force imparts self-restoring behaviour to the particles, and three-dimensional (3D) trapping of single particles is achieved at an extremely low optical intensity of 10-2 mW μm-2. Moreover, the OTEP force can overcome the short trapping range of conventional optical tweezers and optically drive the particle flow up to a macroscopic distance. The concept of self-induced opto-thermomechanical coupling is paving the way towards freeform optofluidic technology and lab-on-a-chip devices.
Direct molecular-level near-field plasmon and temperature assessment in a single plasmonic hotspot
Marie Richard-Lacroix, Volker Deckert
Published. 2020, 9(2) : 330-342 doi: 10.1038/s41377-020-0260-9
Tip-enhanced Raman spectroscopy (TERS) is currently widely recognized as an essential but still emergent technique for exploring the nanoscale. However, our lack of comprehension of crucial parameters still limits its potential as a user-friendly analytical tool. The tip's surface plasmon resonance, heating due to near-field temperature rise, and spatial resolution are undoubtedly three challenging experimental parameters to unravel. However, they are also the most fundamentally relevant parameters to explore, because they ultimately influence the state of the investigated molecule and consequently the probed signal. Here we propose a straightforward and purely experimental method to access quantitative information of the plasmon resonance and near-field temperature experienced exclusively by the molecules directly contributing to the TERS signal. The detailed near-field optical response, both at the molecular level and as a function of time, is evaluated using standard TERS experimental equipment by simultaneously probing the Stokes and anti-Stokes spectral intensities. Self-assembled 16-mercaptohexadodecanoic acid monolayers covalently bond to an ultra-flat gold surface were used as a demonstrator. Observation of blinking lines in the spectra also provides crucial information on the lateral resolution and indication of atomic-scale thermally induced morphological changes of the tip during the experiment. This study provides access to unprecedented molecular-level information on physical parameters that crucially affect experiments under TERS conditions. The study thereby improves the usability of TERS in day-to-day operation. The obtained information is of central importance for any experimental plasmonic investigation and for the application of TERS in the field of nanoscale thermometry.
Learning to synthesize: robust phase retrieval at low photon counts
Mo Deng, Shuai Li, Alexandre Goy, Iksung Kang, George Barbastathis
Published. 2020, 9(2) : 343-358 doi: 10.1038/s41377-020-0267-2
The quality of inverse problem solutions obtained through deep learning is limited by the nature of the priors learned from examples presented during the training phase. Particularly in the case of quantitative phase retrieval, spatial frequencies that are underrepresented in the training database, most often at the high band, tend to be suppressed in the reconstruction. Ad hoc solutions have been proposed, such as pre-amplifying the high spatial frequencies in the examples; however, while that strategy improves the resolution, it also leads to high-frequency artefacts, as well as low-frequency distortions in the reconstructions. Here, we present a new approach that learns separately how to handle the two frequency bands, low and high, and learns how to synthesize these two bands into full-band reconstructions. We show that this "learning to synthesize" (LS) method yields phase reconstructions of high spatial resolution and without artefacts and that it is resilient to high-noise conditions, e.g., in the case of very low photon flux. In addition to the problem of quantitative phase retrieval, the LS method is applicable, in principle, to any inverse problem where the forward operator treats different frequency bands unevenly, i.e., is ill-posed.
Excitonic complexes and optical gain in two-dimensional molybdenum ditelluride well below the Mott transition
Zhen Wang, Hao Sun, Qiyao Zhang, Jiabin Feng, Jianxing Zhang, et al.
Published. 2020, 9(2) : 359-368 doi: 10.1038/s41377-020-0278-z
Semiconductors that can provide optical gain at extremely low carrier density levels are critically important for applications such as energy efficient nanolasers. However, all current semiconductor lasers are based on traditional semiconductor materials that require extremely high density levels above the so-called Mott transition to realize optical gain. The new emerging 2D materials provide unprecedented opportunities for studying new excitonic physics and exploring new optical gain mechanisms at much lower density levels due to the strong Coulomb interaction and co-existence and mutual conversion of excitonic complexes. Here, we report a new gain mechanism involving charged excitons or trions in electrically gated 2D molybdenum ditelluride well below the Mott density. Our combined experimental and modelling study not only reveals the complex interplay of excitonic complexes well below the Mott transition but also establishes 2D materials as a new class of gain materials at densities 4–5 orders of magnitude lower than those of conventional semiconductors and provides a foundation for lasing at ultralow injection levels for future energy efficient photonic devices. Additionally, our study could help reconcile recent conflicting results on 2D materials: While 2D material-based lasers have been demonstrated at extremely low densities with spectral features dominated by various excitonic complexes, optical gain was only observed in experiments at densities several orders of magnitude higher, beyond the Mott density. We believe that our results could lead to more systematic studies on the relationship between the mutual conversion of excitonic species and the existence of optical gain well below the Mott transition.
Photonic topological fermi nodal disk in nonHermitian magnetic plasma
Wenhui Wang, Wenlong Gao, Leifeng Cao, Yuanjiang Xiang, Shuang Zhang
Published. 2020, 9(2) : 369-376 doi: 10.1038/s41377-020-0274-3
Topological physics mainly arises as a necessary link between properties of the bulk and the appearance of surface states, and has led to successful discoveries of novel topological surface states in Chern insulators, topological insulators, and topological Fermi arcs in Weyl, Dirac, and Nodal line semimetals owing to their nontrivial bulk topology. In particular, topological phases in non-Hermitian systems have attracted growing interests in recent years. In this work, we predict the emergence of the topologically stable nodal disks where the real part of the eigen frequency is degenerate between two bands in non-ideal magnetohydrodynamics plasma with collision and viscosity dissipations. Each nodal disk possesses continuously distributed topological surface charge density that integrates to unity. It is found that the lossy Fermi arcs at the interface connect to the middle of the projection of the nodal disks. We further show that the emergence, coalescence, and annihilation of the nodal disks can be controlled by plasma parameters and dissipation terms. Our findings contribute to understanding of the linear theory of bulk and surface wave dispersions of non-ideal warm magnetic plasmas from the perspective of topological physics.
O-FIB: far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment
Zhen-Ze Li, Lei Wang, Hua Fan, Yan-Hao Yu, Qi-Dai Chen, et al.
Published. 2020, 9(2) : 377-383 doi: 10.1038/s41377-020-0275-2
Nanoscale surface texturing, drilling, cutting, and spatial sculpturing, which are essential for applications, including thin-film solar cells, photonic chips, antireflection, wettability, and friction drag reduction, require not only high accuracy in material processing, but also the capability of manufacturing in an atmospheric environment. Widely used focused ion beam (FIB) technology offers nanoscale precision, but is limited by the vacuum-working conditions; therefore, it is not applicable to industrial-scale samples such as ship hulls or biomaterials, e.g., cells and tissues. Here, we report an optical far-field-induced near-field breakdown (O-FIB) approach as an optical version of the conventional FIB technique, which allows direct nanowriting in air. The writing is initiated from nanoholes created by femtosecond-laser-induced multiphoton absorption, and its cutting pknife edgeq is sharpened by the far-field-regulated enhancement of the optical near field. A spatial resolution of less than 20 nm (λ/40, with λ being the light wavelength) is readily achieved. O-FIB is empowered by the utilization of simple polarization control of the incident light to steer the nanogroove writing along the designed pattern. The universality of near-field enhancement and localization makes O-FIB applicable to various materials, and enables a large-area printing mode that is superior to conventional FIB processing.
Heterostructure and Q-factor engineering for low-threshold and persistent nanowire lasing
Stefan Skalsky, Yunyan Zhang, Juan Arturo Alanis, H. Aruni Fonseka, Ana M. Sanchez, et al.
Published. 2020, 9(2) : 384-393 doi: 10.1038/s41377-020-0279-y
Continuous room temperature nanowire lasing from silicon-integrated optoelectronic elements requires careful optimisation of both the lasing cavity Q-factor and population inversion conditions. We apply time-gated optical interferometry to the lasing emission from high-quality GaAsP/GaAs quantum well nanowire laser structures, revealing high Q-factors of 1250 ± 90 corresponding to end-facet reflectivities of R = 0.73 ± 0.02. By using optimised direct-indirect band alignment in the active region, we demonstrate a well-refilling mechanism providing a quasi-four-level system leading to multi-nanosecond lasing and record low room temperature lasing thresholds (~6 μJ cm-2 pulse-1) for Ⅲ-Ⅴ nanowire lasers. Our findings demonstrate a highly promising new route towards continuously operating silicon-integrated nanolaser elements.
Water-induced MAPbBr3@PbBr(OH) with enhanced luminescence and stability
Kai-Kai Liu, Qian Liu, Dong-Wen Yang, Ya-Chuan Liang, Lai-Zhi Sui, et al.
Published. 2020, 9(2) : 394-404 doi: 10.1038/s41377-020-0283-2
Poor stability has long been one of the key issues that hinder the practical applications of lead-based halide perovskites. In this paper, the photoluminescence (PL) quantum yield (QY) of bromide-based perovskites can be increased from 2.5% to 71.54% by introducing water, and the PL QY of a sample in aqueous solution decreases minimally over 1 year. The enhanced stability and PL QY can be attributed to the water-induced methylamino lead bromide perovskite (MAPbBr3)@PbBr(OH). We note that this strategy is universal to MAPbBr3, formamidine lead bromide perovskite (FAPbBr3), inorganic lead bromide perovskite (CsPbBr3), etc. Light-emitting devices (LEDs) are fabricated by using the as-prepared perovskite as phosphors on a 365 nm UV chip. The luminance intensity of the LED is 9549 cd/m2 when the driven current is 200 mA, and blemishes on the surface of glass are clearly observed under the illumination of the LEDs. This work provides a new strategy for highly stable and efficient perovskites.
Efficient generation of relativistic near-single-cycle mid-infrared pulses in plasmas
Xing-Long Zhu, Su-Ming Weng, Min Chen, Zheng-Ming Sheng, Jie Zhang
Published. 2020, 9(2) : 405-413 doi: 10.1038/s41377-020-0282-3
Ultrashort intense optical pulses in the mid-infrared (mid-IR) region are very important for broad applications ranging from super-resolution spectroscopy to attosecond X-ray pulse generation and particle acceleration. However, currently, it is still difficult to produce few-cycle mid-IR pulses of relativistic intensities using standard optical techniques. Here, we propose and numerically demonstrate a novel scheme to produce these mid-IR pulses based on laser-driven plasma optical modulation. In this scheme, a plasma wake is first excited by an intense drive laser pulse in an underdense plasma, and a signal laser pulse initially at the same wavelength (1 micron) as that of the drive laser is subsequently injected into the plasma wake. The signal pulse is converted to a relativistic multi-millijoule near-single-cycle mid-IR pulse with a central wavelength of ~5 microns via frequency-downshifting, where the energy conversion efficiency is as high as approximately 30% when the drive and signal laser pulses are both at a few tens of millijoules at the beginning. Our scheme can be realized with terawatt-class kHz laser systems, which may bring new opportunities in high-field physics and ultrafast science.
Relativistic-intensity near-single-cycle light waveforms at kHz repetition rate
Marie Ouillé, Aline Vernier, Frederik Böhle, Maïmouna Bocoum, Aurélie Jullien, et al.
Published. 2020, 9(2) : 414-422 doi: 10.1038/s41377-020-0280-5
The development of ultra-intense and ultra-short light sources is currently a subject of intense research driven by the discovery of novel phenomena in the realm of relativistic optics, such as the production of ultrafast energetic particle and radiation beams for applications. It has been a long-standing challenge to unite two hitherto distinct classes of light sources: those achieving relativistic intensity and those with pulse durations approaching a single light cycle. While the former class traditionally involves large-scale amplification chains, the latter class places high demand on the spatiotemporal control of the electromagnetic laser field. Here, we present a light source producing waveform-controlled 1.5-cycle pulses with a 719 nm central wavelength that can be focused to relativistic intensity at a 1 kHz repetition rate based on nonlinear post-compression in a long hollow-core fiber. The unique capabilities of this source allow us to observe the first experimental indications of light waveform effects in laser wakefield acceleration of relativistic energy electrons.
Ultra-long-working-distance spectroscopy of single nanostructures with aspherical solid immersion microlenses
Aleksander Bogucki, Łukasz Zinkiewicz, Magdalena Grzeszczyk, Wojciech Pacuski, Karol Nogajewski, et al.
Published. 2020, 9(2) : 423-433 doi: 10.1038/s41377-020-0284-1
In light science and applications, equally important roles are played by efficient light emitters/detectors and by the optical elements responsible for light extraction and delivery. The latter should be simple, cost effective, broadband, versatile and compatible with other components of widely desired micro-optical systems. Ideally, they should also operate without high-numerical-aperture optics. Here, we demonstrate that all these requirements can be met with elliptical microlenses 3D printed on top of light emitters. Importantly, the microlenses we propose readily form the collected light into an ultra-low divergence beam (half-angle divergence below 1°) perfectly suited for ultra-long-working-distance optical measurements (600 mm with a 1-inch collection lens), which are not accessible to date with other spectroscopic techniques. Our microlenses can be fabricated on a wide variety of samples, including semiconductor quantum dots and fragile van der Waals heterostructures made of novel two-dimensional materials, such as monolayer and few-layer transition metal dichalcogenides.
Enhanced magnetic modulation of light polarization exploiting hybridization with multipolar dark plasmons in magnetoplasmonic nanocavities
Alberto López-Ortega, Mario Zapata-Herrera, Nicolò Maccaferri, Matteo Pancaldi, Mikel Garcia, et al.
Published. 2020, 9(2) : 434-447 doi: 10.1038/s41377-020-0285-0
Enhancing magneto-optical effects is crucial for reducing the size of key photonic devices based on the non-reciprocal propagation of light and to enable active nanophotonics. Here, we disclose a currently unexplored approach that exploits hybridization with multipolar dark modes in specially designed magnetoplasmonic nanocavities to achieve a large enhancement of the magneto-optically induced modulation of light polarization. The broken geometrical symmetry of the design enables coupling with free-space light and hybridization of the multipolar dark modes of a plasmonic ring nanoresonator with the dipolar localized plasmon resonance of the ferromagnetic disk placed inside the ring. This hybridization results in a low-radiant multipolar Fano resonance that drives a strongly enhanced magneto-optically induced localized plasmon. The large amplification of the magneto-optical response of the nanocavity is the result of the large magneto-optically induced change in light polarization produced by the strongly enhanced radiant magneto-optical dipole, which is achieved by avoiding the simultaneous enhancement of re-emitted light with incident polarization by the multipolar Fano resonance. The partial compensation of the magneto-optically induced polarization change caused by the large re-emission of light with the original polarization is a critical limitation of the magnetoplasmonic designs explored thus far and that is overcome by the approach proposed here.
Saturable plasmonic metasurfaces for laser mode locking
Jiyong Wang, Aurelien Coillet, Olivier Demichel, Zhiqiang Wang, Davi Rego, et al.
Published. 2020, 9(2) : 448-456 doi: 10.1038/s41377-020-0291-2
Metamaterials are artificial materials made of subwavelength elementary cells that give rise to unexpected wave properties that do not exist naturally. However, these properties are generally achieved due to 3D patterning, which is hardly feasible at short wavelengths in the visible and near-infrared regions targeted by most photonic applications. To overcome this limitation, metasurfaces, which are the 2D counterparts of metamaterials, have emerged as promising platforms that are compatible with planar nanotechnologies and thus mass production, which platforms the properties of a metamaterial into a 2D sheet. In the linear regime, wavefront manipulation for lensing, holography, and polarization control has been achieved recently. Interest in metasurfaces operating in the nonlinear regime has also increased due to the ability of metasurfaces to efficiently convert incident light into harmonic frequencies with unusual polarization properties. However, to date, the nonlinear absorption of metasurfaces has been mostly ignored. Here, we demonstrate that plasmonic metasurfaces behave as saturable absorbers with modulation performances superior to the modulation performance of other 2D materials and exhibit unusual polarimetric nonlinear transfer functions. We quantify the link between saturable absorption, the plasmonic resonances of the unit cell and their distribution in a 2D metasurface, and finally provide a practical implementation by integrating the metasurfaces into a fiber laser cavity operating in pulsed regimes driven by the metasurface properties. As such, this work provides new perspectives on ultrathin nonlinear saturable absorbers for applications where tunable nonlinear transfer functions are needed, such as in ultrafast lasers or neuromorphic circuits.
Ultrafast response of harmonic modelocked THz lasers
Feihu Wang, Valentino Pistore, Michael Riesch, Hanond Nong, Pierre-Baptiste Vigneron, et al.
Published. 2020, 9(2) : 457-464 doi: 10.1038/s41377-020-0288-x
The use of fundamental modelocking to generate short terahertz (THz) pulses and THz frequency combs from semiconductor lasers has become a routine affair, using quantum cascade lasers (QCLs) as a gain medium. However, unlike classic laser diodes, no demonstrations of harmonic modelocking, active or passive, have been shown in THz QCLs, where multiple pulses per round trip are generated when the laser is modulated at the harmonics of the cavity's fundamental round-trip frequency. Here, using time-resolved THz techniques, we show for the first time harmonic injection and mode-locking in which THz QCLs are modulated at the harmonics of the round-trip frequency. We demonstrate the generation of the harmonic electrical beatnote within a QCL, its injection locking to an active modulation and its direct translation to harmonic pulse generation using the unique ultrafast nature of our approach. Finally, we show indications of self-starting harmonic emission, i.e., without external modulation, where the QCL operates exclusively on a harmonic (up to its 15th harmonic) of the round-trip frequency. This behaviour is supported by time-resolved simulations of induced gain and loss in the system and shows the importance of the electronic, as well as photonic, nature of QCLs. These results open up the prospect of passive harmonic modelocking and THz pulse generation, as well as the generation of low-noise microwave generation in the hundreds of GHz region.
News & Views
Toward a self-driving ultrafast fiber laser
Fanchao Meng, John M. Dudley
Published. 2020, 9(2) : 219-221 doi: 10.1038/s41377-020-0270-7
Femtosecond pulses from an ultrafast mode-locked fiber laser can be optimized in real time by combining single-shot spectral measurements with a smart genetic algorithm to actively control and drive the intracavity dynamics.
Enhancing infrared emission of mercury telluride (HgTe) quantum dots by plasmonic structures
Shaofan Yuan, Chen Chen, Qiushi Guo, Fengnian Xia
Published. 2020, 9(2) : 222-223 doi: 10.1038/s41377-020-0276-1
The coupling of HgTe quantum dots to a gold nanobump plasmonic array can enhance the spontaneous infrared emission by a factor of five and reduce the influence of nonradiative decay channels.
Biologically inspired ultrathin arrayed camera for high-contrast and high-resolution imaging
Kisoo Kim, Kyung-Won Jang, Jae-Kwan Ryu, Ki-Hun Jeong
Published. 2020, 9(2) : 224-230 doi: 10.1038/s41377-020-0261-8
Compound eyes found in insects provide intriguing sources of biological inspiration for miniaturised imaging systems. Here, we report an ultrathin arrayed camera inspired by insect eye structures for high-contrast and super-resolution imaging. The ultrathin camera features micro-optical elements (MOEs), i.e., inverted microlenses, multilayered pinhole arrays, and gap spacers on an image sensor. The MOE was fabricated by using repeated photolithography and thermal reflow. The fully packaged camera shows a total track length of 740 μm and a field-of-view (FOV) of 73°. The experimental results demonstrate that the multilayered pinhole of the MOE allows high-contrast imaging by eliminating the optical crosstalk between microlenses. The integral image reconstructed from array images clearly increases the modulation transfer function (MTF) by ~1.57 times compared to that of a single channel image in the ultrathin camera. This ultrathin arrayed camera provides a novel and practical direction for diverse mobile, surveillance or medical applications.
On-chip single-mode CdS nanowire laser
Qingyang Bao, Weijia Li, Peizhen Xu, Ming Zhang, Daoxin Dai, et al.
Published. 2020, 9(2) : 231-235 doi: 10.1038/s41377-020-0277-0
By integrating a free-standing cadmium sulfide (CdS) nanowire onto a silicon nitride (SiN) photonic chip, we demonstrate a highly compact on-chip single-mode CdS nanowire laser. The mode selection is realized using a Mach-Zehnder interferometer (MZI) structure. When the pumping intensity exceeds the lasing threshold of 4.9 kW/cm2, on-chip single-mode lasing at ~518.9 nm is achieved with a linewidth of 0.1 nm and a side-mode suppression ratio of up to a factor of 20 (13 dB). The output of the nanowire laser is channelled into an on-chip SiN waveguide with high efficiency (up to 58%) by evanescent coupling, and the directional coupling ratio between the two output ports can be varied from 90 to 10% by predesigning the coupling length of the SiN waveguide. Our results open new opportunities for both nanowire photonic devices and on-chip light sources and may pave the way towards a new category of hybrid nanolasers for chip-integrated applications.
Real-time transition dynamics and stability of chipscale dispersion-managed frequency microcombs
Yongnan Li, Shu-Wei Huang, Bowen Li, Hao Liu, Jinghui Yang, et al.
Published. 2020, 9(2) : 244-253 doi: 10.1038/s41377-020-0290-3
Femtosecond mode-locked laser frequency combs have served as the cornerstone in precision spectroscopy, all-optical atomic clocks, and measurements of ultrafast dynamics. Recently frequency microcombs based on nonlinear microresonators have been examined, exhibiting remarkable precision approaching that of laser frequency combs, on a solid-state chip-scale platform and from a fundamentally different physical origin. Despite recent successes, to date, the real-time dynamical origins and high-power stabilities of such frequency microcombs have not been fully addressed. Here, we unravel the transitional dynamics of frequency microcombs from chaotic background routes to femtosecond mode-locking in real time, enabled by our ultrafast temporal magnifier metrology and improved stability of dispersion-managed dissipative solitons. Through our dispersion-managed oscillator, we further report a stability zone that is more than an order-of-magnitude larger than its prior static homogeneous counterparts, providing a novel platform for understanding ultrafast dissipative dynamics and offering a new path towards high-power frequency microcombs.
Pushing periodic-disorder-induced phase matching into the deep-ultraviolet spectral region: theory and demonstration
Mingchuan Shao, Fei Liang, Haohai Yu, Huaijin Zhang
Published. 2020, 9(2) : 236-243 doi: 10.1038/s41377-020-0281-4
Nonlinear frequency conversion is a ubiquitous technique that is used to obtain broad-range lasers and supercontinuum coherent sources. The phase-matching condition (momentum conservation relation) is the key criterion but a challenging bottleneck in highly efficient conversion. Birefringent phase matching (BPM) and quasi-phase matching (QPM) are two feasible routes but are strongly limited in natural anisotropic crystals or ferroelectric crystals. Therefore, it is in urgent demand for a general technique that can compensate for the phase mismatching in universal nonlinear materials and in broad wavelength ranges. Here, an additional periodic phase (APP) from order/disorder alignment is proposed to meet the phase-matching condition in arbitrary nonlinear crystals and demonstrated from the visible region to the deep-ultraviolet region (e.g., LiNbO3 and quartz). Remarkably, pioneering 177.3-nm coherent output is first obtained in commercial quartz crystal with an unprecedented conversion efficiency above 1‰. This study not only opens a new roadmap to resuscitate those long-neglected nonlinear optical crystals for wavelength extension, but also may revolutionize next-generation nonlinear photonics and their further applications.