Featured
Published
, Published online: 24 February 2021
, doi: 10.37188/lam.2021.005
Silicon (Si) photonics is a disruptive technology on the fast track to revolutionise integrated photonics. An indispensable branch thereof, heterogeneous Si integration, has also evolved from a science project 15 years ago to a growing business and compelling research field today. We focus on the scope of III-V compound semiconductors heterogeneously integrated on Si substrates. The commercial success of massively produced integrated optical transceivers based on first-generation innovation is discussed. Then, we review a number of technological breakthroughs at the component and platform levels. In addition to the numerous new device performance records, our emphasis is on the rationale behind and the design principles underlying specific examples of materials and device integration. Finally, we offer perspectives on development trends catering to the increasing demand in many existing and emerging applications.
Published
, Published online: 04 February 2021
, doi: 10.37188/lam.2021.002
The miniaturisation of spectroscopic measurement devices opens novel information channels for size critical applications such as endoscopy or consumer electronics. Computational spectrometers in the micrometre size range have been demonstrated, however, these are calibration sensitive and based on complex reconstruction algorithms. Herein we present an angle-insensitive 3D-printed miniature spectrometer with a direct separated spatial-spectral response. The spectrometer was fabricated via two-photon direct laser writing combined with a super-fine inkjet process. It has a volume of less than 100 × 100 × 300 μm3. Its tailored and chirped high-frequency grating enables strongly dispersive behaviour. The miniature spectrometer features a wavelength range of 200 nm in the visible range from 490 nm to 690 nm. It has a spectral resolution of 9.2 ± 1.1 nm at 532 nm and 17.8 ± 1.7 nm at a wavelength of 633 nm. Printing this spectrometer directly onto camera sensors is feasible and can be replicated for use as a macro-pixel of a snapshot hyperspectral camera.
Published
, Published online: 20 December 2021
, doi: 10.37188/lam.2021.028
The pioneers of holography, Gabor, Leith, Upatnieks, and Denisyuk, predicted very early that the ultimate 3D display will be based on this technique. This conviction was rooted on the fact that holography is the only approach that can render all optical cues interpreted by the human visual system. Holographic 3D displays have been a dream chased after for many years, facing challenges on all fronts: computation, transmission, and rendering. With numbers such as 6.6 × 1015 flops required for calculations, 3 × 1015 b/s data rates, and 1.6 × 1012 phase pixels, the task has been daunting. This article is reviewing the recent accomplishments made in the field of holographic 3D display. Specifically, the new developments in machine learning and neural network algorithms demonstrating that computer-generated holograms approach real-time processing. A section also discuss the problem of data transmission that can arguably be solved using clever compression algorithms and optical fiber transmission lines. Finally, we introduce the last obstacle to holographic 3D display, which is is the rendering hardware. However, there is no further mystery. With larger and faster spatial light modulators (SLMs), holographic projection systems are constantly improving. The pixel count on liquid crystal on silicon (LCoS) as well as microelectromechanical systems (MEMS) phase displays is increasing by the millions, and new photonic integrated circuit phased arrays are achieving real progress. It is only a matter of time for these systems to leave the laboratory and enter the consumer world. The future of 3D displays is holographic, and it is happening now.
Published
, Published online: 21 June 2021
, doi: 10.37188/lam.2021.017
Three-dimensional (3D) laser micro- and nanoprinting based upon multi-photon absorption has made its way from early scientific discovery to industrial manufacturing processes, e.g., for advanced microoptical components. However, so far, most realized 3D architectures are composed of only a single polymeric material. Here, we review 3D printing of multi-materials on the nano- and microscale. We start with material properties that have been realized, using multi-photon photoresists. Printed materials include bulk polymers, conductive polymers, metals, nanoporous polymers, silica glass, chalcogenide glasses, inorganic single crystals, natural polymers, stimuli-responsive materials, and polymer composites. Next, we review manual and automated processes achieving dissimilar material properties in a single 3D structure by sequentially photo-exposing multiple photoresists as 3D analogs of 2D multicolor printing. Instructive examples from biology, optics, mechanics, and electronics are discussed. An emerging approach – without counterpart in 2D graphical printing – prints 3D structures combining dissimilar material properties in one 3D structure by using only a single photoresist. A controlled stimulus applied during the 3D printing process defines and determines material properties on the voxel level. Change of laser power and/or wavelength, or application of quasi-static electric fields allow for the seamless manipulation of desired materials properties.
Published
, Published online: 31 March 2021
, doi: 10.37188/lam.2021.006
Future quantum technology relies crucially on building quantum networks with high fidelity. To achieve this challenging goal, it is of utmost importance to connect individual quantum systems such that their emitted single photons overlap with the highest possible degree of coherence. This requires perfect mode overlap of the emitted light from different emitters, which necessitates the use of single-mode fibres. Here, we present an advanced manufacturing approach to accomplish this task. We combined 3D printed complex micro-optics, such as hemispherical and Weierstrass solid immersion lenses, as well as total internal reflection solid immersion lenses, on top of individual indium arsenide quantum dots with 3D printed optics on single-mode fibres and compared their key features. We observed a systematic increase in the collection efficiency under variations of the lens geometry from roughly 2 for hemispheric solid immersion lenses up to a maximum of greater than 9 for the total internal reflection geometry. Furthermore, the temperature-induced stress was estimated for these particular lens dimensions and results to be approximately 5 meV. Interestingly, the use of solid immersion lenses further increased the localisation accuracy of the emitters to less than 1 nm when acquiring micro-photoluminescence maps. Furthermore, we show that the single-photon character of the source is preserved after device fabrication, reaching a \begin{document}$ g^{(2)} (0)$\end{document} ![]()
![]()
value of approximately 0.19 under pulsed optical excitation. The printed lens device can be further joined with an optical fibre and permanently fixed.This integrated system can be cooled by dipping into liquid helium using a Stirling cryocooler or by a closed-cycle helium cryostat without the necessity for optical windows, as all access is through the integrated single-mode fibre. We identify the ideal optical designs and present experiments that demonstrate excellent high-rate single-photon emission.
Published
, Published online: 01 April 2021
, doi: 10.37188/lam.2021.009
Virtual instruments provide task-specific uncertainty evaluation in surface and dimensional metrology. We demonstrate the first virtual coherence scanning interferometer that can accurately predict the results from measurements of surfaces with complex topography using a specific real instrument. The virtual instrument is powered by physical models derived from first principles, including surface-scattering models, three-dimensional imaging theory, and error-generation models. By incorporating the influences of various error sources directly into the interferogram before reconstructing the surface, the virtual instrument works in the same manner as a real instrument. To enhance the fidelity of the virtual measurement, the experimentally determined three-dimensional transfer function of a specific instrument configuration is used to characterise the virtual instrument. Finally, we demonstrate the experimental validation of the virtual instrument, followed by virtual measurements and error predictions for several typical surfaces that are within the validity regime of the physical models.