[1] |
Sutherland, B. R. & Sargent, E. H. Perovskite photonic sources. Nature Photonics 10, 295-302 (2016). |
[2] |
Tao, S. X. et al. Absolute energy level positions in tin- and lead-based halide perovskites. Nature Communications 10, 2560 (2019). |
[3] |
Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Letters 15, 3692-3696 (2015). |
[4] |
Kumar, S. et al. Ultrapure green light-emitting diodes using two-dimensional formamidinium perovskites: achieving recommendation 2020 color coordinates. Nano Letters 17, 5277-5284 (2017). |
[5] |
Yu, D. J. et al. Room-temperature ion-exchange-mediated self-assembly toward formamidinium perovskite nanoplates with finely tunable, ultrapure green emissions for achieving rec. 2020 displays. Advanced Functional Materials 28, 1800248 (2018). |
[6] |
Quan, L. N. et al. Ligand-stabilized reduced-dimensionality perovskites. Journal of the American Chemical Society 138, 2649-2655 (2016). |
[7] |
Quan, L. N. et al. Tailoring the energy landscape in quasi-2D halide perovskites enables efficient green-light emission. Nano Letters 17, 3701-3709 (2017). |
[8] |
Aharon, S. & Etgar L. Two dimensional organometal halide perovskite nanorods with tunable optical properties. Nano Letters 16, 3230-3235 (2016). |
[9] |
Akkerman, Q. A. et al. Controlling the nucleation and growth kinetics of lead halide perovskite quantum dots. Science 377, 1406-1412 (2022). |
[10] |
Dong, Y. T. et al. Precise control of quantum confinement in cesium lead halide perovskite quantum dots via thermodynamic equilibrium. Nano Letters 18, 3716-3722 (2018). |
[11] |
Yang, J. N. et al. Potassium bromide surface passivation on CsPbI3-xBrx nanocrystals for efficient and stable pure red perovskite light-emitting diodes. Journal of the American Chemical Society 142, 2956-2967 (2020). |
[12] |
Zhang, C. X. et al. Metal halide perovskite nanorods: shape matters. Advanced Materials 32, 2002736 (2020). |
[13] |
Tan, Z. K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnology 9, 687-692 (2014). |
[14] |
Chiba, T. et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nature Photonics 12, 681-687 (2018). |
[15] |
Jiang, J. et al. Red perovskite light-emitting diodes with efficiency exceeding 25% realized by co-spacer cations. Advanced Materials 34, 2204460 (2022). |
[16] |
Kim, J. S. et al. Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611, 688-694 (2022). |
[17] |
Kong, L. M. et al. Smoothing the energy transfer pathway in quasi-2D perovskite films using methanesulfonate leads to highly efficient light-emitting devices. Nature Communications 12, 1246 (2021). |
[18] |
Liu, Z. et al. Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation. Advanced Materials 33, 2103268 (2021). |
[19] |
Wang, Y. K. et al. All-inorganic quantum-dot LEDs based on a phase-stabilized α-CsPbI3 perovskite. Angewandte Chemie International Edition 60, 16164-16170 (2021). |
[20] |
Xu, W. D. et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nature Photonics 13, 418-424 (2019). |
[21] |
Zhao, B. D. et al. High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nature Photonics 12, 783-789 (2018). |
[22] |
Jiang, Y. Z. et al. Synthesis-on-substrate of quantum dot solids. Nature 612, 679-684 (2022). |
[23] |
Zeng, L. X. et al. Controlling the crystallization dynamics of photovoltaic perovskite layers on larger-area coatings. Energy & Environmental Science 13, 4666-4690 (2020). |
[24] |
Sun, C. J. et al. High-performance large-area quasi-2D perovskite light-emitting diodes. Nature Communications 12, 2207 (2021). |
[25] |
Choi, M. K. et al. Flexible quantum dot light-emitting diodes for next-generation displays. npj Flexible Electronics 2, 10 (2018). |
[26] |
Choi, S. et al. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Advanced Materials 28, 4203-4218 (2016). |
[27] |
Lee, G. H. et al. Multifunctional materials for implantable and wearable photonic healthcare devices. Nature Reviews Materials 5, 149-165 (2020). |
[28] |
Wan, Q. et al. Ultrathin light-emitting diodes with external efficiency over 26% based on resurfaced perovskite nanocrystals. ACS Energy Letters 8, 927-934 (2023). |
[29] |
Song, Y. H. et al. Planar defect–free pure red perovskite light-emitting diodes via metastable phase crystallization. Science Advances 8, eabq2321 (2022). |
[30] |
Wang, H. R. et al. A multi-functional molecular modifier enabling efficient large-area perovskite light-emitting diodes. Joule 4, 1977-1987 (2020). |
[31] |
Ban, M. Y. et al. Solution-processed perovskite light emitting diodes with efficiency exceeding 15% through additive-controlled nanostructure tailoring. Nature Communications 9, 3892 (2018). |
[32] |
Liu, Y. et al. Highly efficient all-solution processed inverted quantum dots based light emitting diodes. ACS Nano 12, 1564-1570 (2018). |
[33] |
Wang, N. N. et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nature Photonics 10, 699-704 (2016). |
[34] |
Yuan, S. et al. Self-assembled high quality CsPbBr3 quantum dot films toward highly efficient light-emitting diodes. ACS Nano 12, 9541-9548 (2018). |
[35] |
Zhao, X. F. & Tan, Z. K. Large-area near-infrared perovskite light-emitting diodes. Nature Photonics 14, 215-218 (2020). |
[36] |
Kim, D. B. et al. Uniform and large-area cesium-based quasi-2D Perovskite light-emitting diodes using hot-casting method. Advanced Materials Interfaces 7, 1902158 (2020). |
[37] |
Huang, H. et al. Colloidal lead halide perovskite nanocrystals: synthesis, optical properties and applications. NPG Asia Materials 8, e328 (2016). |
[38] |
Kong, L. M. et al. Universal molecular control strategy for scalable fabrication of perovskite light-emitting diodes. Nano Letters 23, 985-992 (2023). |
[39] |
Deng, Y. H. et al. Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nature Energy 3, 560-566 (2018). |
[40] |
Deng, Y. H. et al. Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic films. Science Advances 5, eaax7537 (2019). |
[41] |
Kim, Y. H. et al. Exploiting the full advantages of colloidal perovskite nanocrystals for large-area efficient light-emitting diodes. Nature Nanotechnology 17, 590-597 (2022). |
[42] |
Chu, S. L. et al. Large-area and efficient perovskite light-emitting diodes via low-temperature blade-coating. Nature Communications 12, 147 (2021). |
[43] |
Chu, S. L. et al. Large-area and efficient sky-blue perovskite light-emitting diodes via blade-coating. Advanced Materials 34, 2108939 (2022). |
[44] |
Chen, C. R. et al. Vacuum-assisted preparation of high-quality quasi-2D perovskite thin films for large-area light-emitting diodes. Advanced Functional Materials 32, 2107644 (2022). |
[45] |
Liu, Y. et al. Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures. Nature Photonics 13, 760-764 (2019). |
[46] |
Chen, Z. M. et al. Recombination dynamics study on nanostructured perovskite light-emitting devices. Advanced Materials 30, 1801370 (2018). |
[47] |
Lee, D. K. et al. Precursor engineering for a large-area perovskite solar cell with > 19% efficiency. ACS Energy Letters 4, 2393-2401 (2019). |
[48] |
Yang, J. X. et al. Ink engineering in blade-coating large-area perovskite solar cells. Advanced Energy Materials 12, 2200975 (2022). |
[49] |
Lin, K. B. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245-248 (2018). |
[50] |
Yang, M. J. et al. Perovskite ink with wide processing window for scalable high-efficiency solar cells. Nature Energy 2, 17038 (2017). |
[51] |
Chen, R. H. et al. Crown ether-assisted growth and scaling up of FACsPbI3 films for efficient and stable perovskite solar modules. Advanced Functional Materials 31, 2008760 (2021). |
[52] |
Miao, Y. F. et al. Deep-red perovskite light-emitting diodes based on one-step-formed γ-CsPbI3 cuboid crystallites. Advanced Materials 33, 2105699 (2021). |
[53] |
Ávila, J. et al. Vapor-deposited perovskites: the route to high-performance solar cell production?. Joule 1, 431-442 (2017). |
[54] |
Li, H. et al. Sequential vacuum-evaporated perovskite solar cells with more than 24% efficiency. Science Advances 8, eabo7422 (2022). |
[55] |
Chen, C. et al. Efficient flexible inorganic perovskite light-emitting diodes fabricated with CsPbBr3 emitters prepared via low-temperature in situ dynamic thermal crystallization. Nano Letters 20, 4673-4680 (2020). |
[56] |
Du, P. P. et al. Efficient and large-area all vacuum-deposited perovskite light-emitting diodes via spatial confinement. Nature Communications 12, 4751 (2021). |
[57] |
Ling, Y. C. et al. Enhanced optical and electrical properties of polymer-assisted all-inorganic perovskites for light-emitting diodes. Advanced Materials 28, 8983-8989 (2016). |
[58] |
Liang, A. H. et al. Highly efficient halide perovskite light-emitting diodes via molecular passivation. Angewandte Chemie International Edition 60, 8337-8343 (2021). |
[59] |
Dumont, A. et al. Extraordinary mass transport and self-assembly: a pathway to fabricate luminescent CsPbBr3 and light-emitting diodes by vapor-phase deposition. Advanced Materials Interfaces 7, 2000506 (2020). |
[60] |
Chiang, K. M. et al. Vacuum-deposited organometallic halide perovskite light-emitting devices. ACS Applied Materials & Interfaces 9, 40516-40522 (2017). |
[61] |
Shen, Y. et al. High-efficiency perovskite light-emitting diodes with synergetic outcoupling enhancement. Advanced Materials 31, 1901517 (2019). |
[62] |
Zhao, Y. J. et al. Chiral 2D-perovskite nanowires for stokes photodetectors. Journal of the American Chemical Society 143, 8437-8445 (2021). |
[63] |
Zhang, Y. P. et al. Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities. Physics Reports 795, 1-51 (2019). |
[64] |
Wang, K. Y. et al. Recent advances in perovskite micro- and nanolasers. Advanced Optical Materials 6, 1800278 (2018). |
[65] |
Saliba, M. et al. Structured organic-inorganic perovskite toward a distributed feedback laser. Advanced Materials 28, 923-929 (2016). |
[66] |
Jeong, B., Han, H. & Park, C. Micro- and nanopatterning of halide perovskites where crystal engineering for emerging photoelectronics meets integrated device array technology. Advanced Materials 32, 2000597 (2020). |
[67] |
Zou, Y. T. et al. Recent progress on patterning strategies for perovskite light-emitting diodes toward a full-color display prototype. Small Science 1, 2000050 (2021). |
[68] |
Harwell, J. et al. Patterning multicolor hybrid perovskite films via top-down lithography. ACS Nano 13, 3823-3829 (2019). |
[69] |
Yin, Y. M. et al. Full-color micro-LED display with CsPbBr3 perovskite and CdSe quantum dots as color conversion layers. Advanced Materials Technologies 5, 2000251 (2020). |
[70] |
Lyashenko, D., Perez, A & Zakhidov, A. High-resolution patterning of organohalide lead perovskite pixels for photodetectors using orthogonal photolithography. Physica Status Solidi (A) 214, 1600302 (2017). |
[71] |
Zou, C. et al. Photolithographic patterning of perovskite thin films for multicolor display applications. Nano Letters 20, 3710-3717 (2020). |
[72] |
Wang, Y. Y. et al. Direct optical lithography of functional inorganic nanomaterials. Science 357, 385-388 (2017). |
[73] |
Liu, D. et al. Direct optical patterning of perovskite nanocrystals with ligand cross-linkers. Science Advances 8, eabm8433 (2022). |
[74] |
Zhan, W. J. et al. In situ patterning perovskite quantum dots by direct laser writing fabrication. ACS Photonics 8, 765-770 (2021). |
[75] |
Liu, J. Y. et al. Flexible, printable soft-X-ray detectors based on all-inorganic perovskite quantum dots. Advanced Materials 31, 1901644 (2019). |
[76] |
Wei, Z. H. et al. Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells. Angewandte Chemie International Edition 53, 13239-13243 (2014). |
[77] |
Shanker, R. et al. Noniridescent biomimetic photonic microdomes by inkjet printing. Nano Letters 20, 7243-7250 (2020). |
[78] |
Li, D. Y. et al. Inkjet printing matrix perovskite quantum dot light-emitting devices. Advanced Materials Technologies 5, 2000099 (2020). |
[79] |
Yunker, P. J. et al. Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature 476, 308-311 (2011). |
[80] |
Wei, C. T. et al. A universal ternary-solvent-ink strategy toward efficient inkjet-printed perovskite quantum dot light-emitting diodes. Advanced Materials 34, 2107798 (2022). |
[81] |
Wang, J. J. et al. Inkjet printing efficient defined-pixel matrix perovskite light-emitting diodes with a polar polymer modification layer. Advanced Materials Technologies 7, 2200370 (2022). |
[82] |
Wang, J. J. et al. Inkjet-printed full-color matrix quasi-two-dimensional perovskite light-emitting diodes. ACS Applied Materials & Interfaces 13, 41773-41781 (2021). |
[83] |
Jeong, B. et al. Polymer-assisted nanoimprinting for environment- and phase-stable perovskite nanopatterns. ACS Nano 14, 1645-1655 (2020). |
[84] |
Cefarin, N. et al. Nanostructuring methylammonium lead iodide perovskite by ultrafast nano imprinting lithography. Microelectronic Engineering 176, 106-110 (2017). |
[85] |
Pourdavoud, N. et al. Photonic nanostructures patterned by thermal nanoimprint directly into organo-metal halide perovskites. Advanced Materials 29, 1605003 (2017). |
[86] |
Wang, H. L. et al. Nanoimprinted perovskite nanograting photodetector with improved efficiency. ACS Nano 10, 10921-10928 (2016). |
[87] |
Makarov, S. V. et al. Multifold emission enhancement in nanoimprinted hybrid perovskite metasurfaces. ACS Photonics 4, 728-735 (2017). |
[88] |
Li, Z. T. et al. Room-temperature continuous-wave operation of organometal halide perovskite lasers. ACS Nano 12, 10968-10976 (2018). |
[89] |
Moon, J. et al. Surface energy-driven preferential grain growth of metal halide perovskites: effects of nanoimprint lithography beyond direct patterning. ACS Applied Materials & Interfaces 13, 5368-5378 (2021). |
[90] |
Jeong, B. et al. Solvent-assisted gel printing for micropatterning thin organic–inorganic hybrid perovskite films. ACS Nano 10, 9026-9035 (2016). |
[91] |
Choi, M. K. et al. Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nature Communications 6, 7149 (2015). |
[92] |
Kwon, J. I. et al. Ultrahigh-resolution full-color perovskite nanocrystal patterning for ultrathin skin-attachable displays. Science Advances 8, eadd0697 (2022). |
[93] |
Li, Z. J. et al. Mass transfer printing of metal-halide perovskite films and nanostructures. Advanced Materials 34, 2203529 (2022). |
[94] |
Lee, Y. et al. Standalone real-time health monitoring patch based on a stretchable organic optoelectronic system. Science Advances 7, eabg9180 (2021). |
[95] |
Lim, K. G., Han, T. H. & Lee, T. W. Engineering electrodes and metal halide perovskite materials for flexible/stretchable perovskite solar cells and light-emitting diodes. Energy & Environmental Science 14, 2009-2035 (2021). |
[96] |
Sun, S. J. et al. Factors influencing the mechanical properties of formamidinium lead halides and related hybrid perovskites. ChemSusChem 10, 3740-3745 (2017). |
[97] |
Feng, J. Mechanical properties of hybrid organic-inorganic CH3NH3BX3 (B= Sn, Pb; X= Br, I) perovskites for solar cell absorbers. APL Materials 2, 081801 (2014). |
[98] |
Wei, F. X. et al. Synthesis and properties of a lead-free hybrid double perovskite: (CH3NH3)2AgBiBr6. Chemistry of Materials 29, 1089-1094 (2017). |
[99] |
Zhao, L. F. et al. Influence of bulky organo-ammonium halide additive choice on the flexibility and efficiency of perovskite light-emitting devices. Advanced Functional Materials 28, 1802060 (2018). |
[100] |
Kim, H. M. et al. Highly stretchable and contact-responsive light-emitting diodes based on MAPbBr3–PEO composite film. Journal of Alloys and Compounds 819, 153360 (2020). |
[101] |
Zhou, H. Y. et al. Water passivation of perovskite nanocrystals enables air-stable intrinsically stretchable color-conversion layers for stretchable displays. Advanced Materials 32, 2001989 (2020). |
[102] |
Qian, X. Y. et al. Bio-inspired pangolin design for self-healable flexible perovskite light-emitting diodes. ACS Nano 16, 17973-17981 (2022). |
[103] |
Sun, S. Q. et al. Enhanced flexibility and stability of emissive layer enable high-performance flexible light-emitting diodes by cross-linking of biomass material. Advanced Functional Materials 32, 2204286 (2022). |
[104] |
Lu, M. et al. Highly flexible CsPbI3 perovskite nanocrystal light-emitting diodes. ChemNanoMat 5, 313-317 (2019). |
[105] |
Ok, K. H. et al. Ultra-thin and smooth transparent electrode for flexible and leakage-free organic light-emitting diodes. Scientific Reports 5, 9464 (2015). |
[106] |
Shen, Y. et al. Rational interface engineering for efficient flexible perovskite light-emitting diodes. ACS Nano 14, 6107-6116 (2020). |
[107] |
Diah, A. W. M. et al. Investigation of the doping efficiency of poly(styrene sulfonic acid) in poly(3, 4-ethylenedioxythiophene)/poly(styrene sulfonic acid) dispersions by capillary electrophoresis. Electrophoresis 35, 1976-1983 (2014). |
[108] |
Vosgueritchian, M., Lipomi, D. J. & Bao, Z. N. Highly conductive and transparent PEDOT: PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Advanced Functional Materials 22, 421-428 (2012). |
[109] |
Jeong, S. H. et al. Ideal conducting polymer anode for perovskite light-emitting diodes by molecular interaction decoupling. Nano Energy 60, 324-331 (2019). |
[110] |
Dong, Z. J. et al. Carbon nanotubes in perovskite-based optoelectronic devices. Matter 5, 448-481 (2022). |
[111] |
Jeon, I. Y. et al. Formation of large-area nitrogen-doped graphene film prepared from simple solution casting of edge-selectively functionalized graphite and its electrocatalytic activity. Chemistry of Materials 23, 3987-3992 (2011). |
[112] |
Cao, F. et al. Mixed-dimensional MXene-based composite electrodes enable mechanically stable and efficient flexible perovskite light-emitting diodes. Nano Letters 22, 4246-4252 (2022). |
[113] |
Joo, W. J. et al. Metasurface-driven OLED displays beyond 10, 000 pixels per inch. Science 370, 459-463 (2020). |
[114] |
Liu, Y. et al. Bright and stable light-emitting diodes based on perovskite quantum dots in perovskite matrix. Journal of the American Chemical Society 143, 15606-15615 (2021). |
[115] |
Guo, B. et al. Ultrastable near-infrared perovskite light-emitting diodes. Nature Photonics 16, 637-643 (2022). |
[116] |
Zou, Y. et al. Recent progress toward perovskite light-emitting diodes with enhanced spectral and operational stability. Materials Today Nano 5, 100028 (2019). |
[117] |
Zhang, L. et al. Suppressing ion migration enables stable perovskite light-emitting diodes with all-inorganic strategy. Advanced Functional Materials 30, 2001834 (2020). |
[118] |
Fakharuddin, A. et al. Reduced efficiency roll-off and improved stability of mixed 2D/3D perovskite light emitting diodes by balancing charge injection. Advanced Functional Materials 29, 1904101 (2019). |
[119] |
Ren, A. B. et al. Emerging light-emitting diodes for next-generation data communications. Nature Electronics 4, 559-572 (2021). |
[120] |
Li, X. W. et al. High-performance CsPbBr3@Cs4PbBr6/SiO2 nanocrystals via double coating layers for white light emission and visible light communication. eScience 2, 646-654 (2022). |
[121] |
Ke, Y. et al. Efficient and bright deep-red light-emitting diodes based on a lateral 0D/3D perovskite heterostructure. Advanced Materials (in the press). |
[122] |
Bao, C. X. et al. Bidirectional optical signal transmission between two identical devices using perovskite diodes. Nature Electronics 3, 156-164 (2020). |
[123] |
Ju, S. M. et al. Dual-function perovskite light-emitting/sensing devices for optical interactive display. Light:Science & Applications 11, 331 (2022). |