[1] |
Deisseroth, K. Optogenetics: 10 years of microbial opsins in neuroscience. Nature neuroscience 18, 1213-1225 (2015). |
[2] |
Häusser, M. Optogenetics: the age of light. Nature methods 11, 1012-1014 (2014). |
[3] |
Shemesh, O. A., et al. Temporally precise single-cellresolution optogenetics. Nature neuroscience 20, 1796-1806 (2017). |
[4] |
Frank, J. A., Antonini, M. -J. & Anikeeva, P. Nextgeneration interfaces for studying neural function. Nature biotechnology 37, 1013-1023 (2019). |
[5] |
Robinson, N. T. M., et al. T Targeted activation of hippocampal place cells drives memory-guided spatial behavior. Cell 183, 1586-1599 (2020). |
[6] |
Aravanis, A. M., et al. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. Journal of neural engineering 4, S143-S156 (2007). |
[7] |
Sparta, D. R., et al. Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits. Nature protocols 7, 12-23 (2012). |
[8] |
Miyamoto, D. & Murayama, M. The fiber-optic imaging and manipulation of neural activity during animal behavior. Neuroscience research 103, 1-9 (2016). |
[9] |
Sych, Y., et al. High-density multi-fiber photometry for studying large-scale brain circuit dynamics. Nature methods 16, 553-560 (2019). |
[10] |
Kim, C. K., et al. Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain. Nature methods 13, 325-328 (2016). |
[11] |
Pisanello, F., et al. Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber. Nature neuroscience 20, 1180-1188 (2017). |
[12] |
Pisano, F., et al. Depth-resolved fiber photometry with a single tapered optical fiber implant. Nature methods 16, 1185-1192 (2019). |
[13] |
Ohayon, S., et al. Minimally invasive multimode optical fiber microendoscope for deep brain fluorescence imaging. Biomedical optics express 9, 1492-1509 (2018). |
[14] |
Vasquez-Lopez, S. A., et al. Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber. Light: science & applications 7, 110 (2018). |
[15] |
Turtaev, S., et al. High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging. Light: science & applications 7, 92 (2018). |
[16] |
Orth, A., et al. Optical fiber bundles: Ultra-slim light field imaging probes. Science advances 5, eaav1555 (2019). |
[17] |
Shin, J., et al. A minimally invasive lens-free computational microendoscope. Science advances 5, eaaw5595 (2019). |
[18] |
Choi, W. et al. Fourier holographic endoscopy for label-free imaging through a narrow and curved passage. Preprint at https://arxiv.org/abs/2010.11776 (2020). |
[19] |
Badt, N. & Katz, O. Label-free video-rate microendoscopy through flexible fibers via fiber bundle distal holography (FiDHo). Proceedings of Digital Holography and Three-Dimensional Imaging 2021. Washington, DC, USA: Optica Publishing Group, 2021. |
[20] |
Plöschner, M., Tyc, T. & Čižmár, T. Seeing through chaos in multimode fibres. Nature photonics 9, 529-535 (2015). |
[21] |
Borhani, N., et al. Learning to see through multimode fibers. Optica 5, 960-966 (2018). |
[22] |
Li, S. H., et al. Compressively sampling the optical transmission matrix of a multimode fibre. Light: science & applications 10, 1-15 (2021). |
[23] |
Gordon, G. S. D., et al. Characterizing optical fiber transmission matrices using metasurface reflector stacks for lensless imaging without distal access. Physical review X 9, 041050 (2019). |
[24] |
Flaes, D. E. B., et al. Robustness of light-transport processes to bending deformations in graded-index multimode waveguides. Physical review letters 120, 233901 (2018). |
[25] |
Tsvirkun, V., et al. Flexible lensless endoscope with a conformationally invariant multi-core fiber. Optica 6, 1185-1189 (2019). |
[26] |
Kim, Y., et al. Adaptive multiphoton endomicroscope incorporating a polarization-maintaining multicore optical fibre. IEEE Journal of Selected Topics in Quantum Electronics 22, 6800708 (2015). |
[27] |
Gordon, G. D., et al. Coherent imaging through multicore fibres with applications in endoscopy. Journal of Lightwave Technology 37, 5733-5745 (2019). |
[28] |
Vellekoop, I. M. & Mosk, A. P. M Focusing coherent light through opaque strongly scattering media. Optics letters 32, 2309-2311 (2007). |
[29] |
Popoff, S., et al. Image transmission through an opaque material. Nature communications 1, 81 (2010). |
[30] |
Mosk, A. P., et al. Controlling waves in space and time for imaging and focusing in complexmedia. Nature photonics 6, 283-292 (2012). |
[31] |
Rotter, S. & Gigan, S. Light fields in complex media: Mesoscopic scattering meets wave control. Reviews of modern physics 89, 015005 (2017). |
[32] |
Leite, I. T., et al. Observing distant objects with a multimode fiber-based holographic endoscope. APL Photonics 6, 036112 (2021). |
[33] |
Leite, I. T., et al. Three-dimensional holographic optical manipulation through a high-numerical-aperture softglass multimode fibre. Nature Photonics 12, 33-39 (2018). |
[34] |
Čižmár, T., Mazilu, M. & Dholakia, K. In situ wavefront correction and its application to micromanipulation. Nature photonics 4, 388-394 (2010). |
[35] |
Čižmár, T. & Dholakia, K. Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics. Optics express 19, 18871-18884 (2011). |