Supplementary Information for

Miniature Optical Fiber Accelerometer Based on an In-Situ 3D Microprinted Ferrule-Top Fabry–Pérot Microinterferometer

Peng Wang¹, Taige Li¹, Htein Lin¹, Pengcheng Zhao¹, Shangming Liu¹, Hwa-Yaw Tam¹,

and A. Ping Zhang^{1,2,*}

- ¹ Photonics Research Institute, Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
- ² State Key Laboratory of Ultraprecision Machining Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.

* Corresponding author's email address: <u>azhang@polyu.edu.hk</u>

This PDF document includes:

- Fig. S1 a Photo of our own-built in-situ optical 3D microprinting system. b Operation schematic diagram and key components of the in-situ optical 3D microprinting system.
- **Fig. S2 a** Numerical simulation results of the frequency responses of the three designed accelerometers. **b** Simulated displacements of the proof mass and reflection mirror of the three accelerometers with respect to acceleration.
- Fig. S3 Modelling, fabrication, and optical testing results of our third designed accelerometer (i.e., accelerometer 3). a (i) CAD model; (ii) Numerical simulation result of the displaced sensor head under 1-g acceleration. b Gray-scale pattern for the proof mass, thin-film reflector and supporting microbeams used in optical printing processes. c SEM image of a fabricated sensor head. d FFT result of the measured reflection spectrum. The inset is the measured reflection spectrums in log scale.
- **Fig. S4 a** Measured dependance of the three accelerometers' outputs on the accelerations at the frequency of 1000 Hz. **b** Measured dependance of the three accelerometers' outputs on the accelerations at the frequency of 2000 Hz.
- Fig. S5 A comparison of the displacements of proof mass and reflection mirror (solid line) deduced from the accelerometers' outputs and their optical sensitivities with numerically simulated displacements (dashed line) under 0-g to 10-g acceleration. a Comparison at the frequency of 100 Hz. b Comparison at the frequency of 3000 Hz.
- Table S1 Comparison between the previously reported optical fiber accelerometers and our work.

Fig. S1 a Photo of our own-built in-situ optical 3D microprinting system. **b** Operation schematic diagram and key components of the in-situ optical 3D microprinting system.

Fig. S2 a Numerical simulation results of the frequency responses of the three designed accelerometers. **b** Simulated displacements of the proof mass and reflection mirror of the three accelerometers with respect to acceleration.

Fig. S3 Modelling, fabrication, and optical testing results of our third designed accelerometer (i.e., accelerometer 3). **a** (i) CAD model; (ii) Numerical simulation result of the displaced sensor head under 1-g acceleration. **b** Gray-scale pattern for the proof mass, thin-film reflector and supporting microbeams used in optical printing processes. **c** SEM image of a fabricated sensor head. **d** FFT result of the measured reflection spectrum. The inset is the measured reflection spectrums in log scale.

Fig. S4 a Measured dependance of the three accelerometers' outputs on the accelerations at the frequency of 1000 Hz. **b** Measured dependance of the three accelerometers' outputs on the accelerations at the frequency of 2000 Hz.

Fig. S5 A comparison of the displacements of proof mass and reflection mirror (solid line) deduced from the accelerometers' outputs and their optical sensitivities with numerically simulated displacements (dashed line) under 0-g to 10-g acceleration. **a** Comparison at the frequency of 100 Hz. **b** Comparison at the frequency of 3000 Hz.

Publication information	Working mechanism	Dimension of sensor head (mm)	Bandwidth	Resolution (μg) /NEA (μg·Hz ^{-1/2})	Sensitivity
Li et al., IEEE Sen. J. 22 , 23931 (2022)	FBG-FP	13×10×5	600 Hz	1500 µg	27.3 mV⋅g ⁻¹
Zhao <i>et al., J. Ligh.</i> <i>Tech.</i> 36 , 1562 (2017)	FPI	Φ2.5×5	120 Hz	8.5 µg	3.86 µm∙g ⁻¹
Wang et al., Opt. Fib. Tech. 72 , 102989 (2022)	FPI	Φ25×10	300 Hz	263 µg	3.81 nm·g ⁻¹
Zhang <i>et al.</i> , Opt. Engi. 57 , 087107 (2018)	FPI	Φ1×2.5	1500 Hz	350 µg·Hz ^{-1/2}	2.9 nm⋅g ⁻¹
Bruno <i>et al., J. Light.</i> <i>Tech.</i> 38 , 1998 (2020)	FPI	2×3×3	4800 Hz	101.25 µg·Hz ^{-1/2}	0.98 nm·g ⁻¹
This work	FPI	Ф0.4×0.1	2000 Hz	62.45 μg·Hz ^{-1/2}	1.8 nm·g ⁻¹

Table S1 Comparison between the previously reported optical fiber accelerometers and our work.