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1 Proof of duality

The CCTV-regularized denoising problem can be equivalently expressed as a
constrained optimization problem as follows:

min
x

1

2γ
∥x− v∥22 + λ∥u∥1 + IC(x), subject to u = Dx, (S1)

where u ∈ C2n is an auxiliary variable. Notice that the problem of Eq. (S1)
is a convex optimization problem with an affine equality constraint, for which
strong duality holds [1]. The Lagrangian is given by

L(x,u,w)=
1

2γ
∥x− v∥22 + λ∥u∥1+IC(x)+Re(⟨w,Dx−u⟩), (S2)

where w ∈ C2n is the dual variable, ⟨·, ·⟩ denotes the inner product of two
vectors, and Re(·) extracts the real part of a complex number. The Lagrange
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dual function, by definition, is

inf
x,u

L(x,u,w)

= inf
x,u

{
1

2γ
∥x− v∥22 + λ∥u∥1 + IC(x) + Re(⟨w,Dx− u⟩)

}
= inf

x∈C

{
1

2γ
∥x− v∥22 +Re(⟨w,Dx⟩)

}
+ inf

u

{
λ∥u∥1 − Re(⟨w,u⟩)

}
(a)
= inf

x∈C

{
1

2γ
∥x− v∥22 +Re(⟨DHw,x⟩)

}
− IS(w)

= inf
x∈C

{
1

2γ

∥∥x− (v − γDHw)
∥∥2
2

}
+

1

2γ
∥v∥22 −

1

2γ

∥∥v − γDHw
∥∥2
2
− IS(w)

=
∥∥HC(v − γDHw)

∥∥2
2
+

1

2γ
∥v∥22 −

1

2γ

∥∥v − γDHw
∥∥2
2
− IS(w), (S3)

where (a) can be easily derived based on the fact that the convex conjugate of
the ℓ1 norm is the indicator function of [−1, 1]n[1]. The last equality in Eq. (S3),
together with strong duality, suggests that the primal optimal solution x⋆ is
related to the dual optimal solution w⋆ via x⋆ = PC(v − γDHw⋆). The dual
problem is to maximize the Lagrange dual function with respect to w, which
is equivalent to Eq. (7) in the main text.

2 Proof of convergence

2.1 Preliminaries

Since we are primarily dealing with real-valued functions over complex-valued
variables, we adopt the CR-calculus as helpful mathematical tool for analysis.
The CR-calculus extends the complex derivative to the general non-analytic
functions. Readers may refer to Ref. [2] for a detailed introduction. The CR-
calculus regards the complex variable x and its conjugate x̄ as independent
variables. Thus, the fidelity function F (x) should be interpreted as a function
over the pair of conjugate vectors x̂ = [xT, x̄T]T ∈ C2n. Nevertheless, to keep
notations consistent, we still denote the function as F (x). The same applies
to other functions as well.

The followings are some intermediate results from matrix analysis, which
are helpful for proving the convergence theorems below.

Lemma 1 [3] Given matrices P ∈ Cn×n, Q ∈ Cn×n, and R ∈ Cn×n. The following
holds:

1. P ≻ Q ⇒ RHPR ≻ RHQR,
2. P ⪰ Q ≻ 0 ⇒ Q−1 ⪰ P−1 ≻ 0.
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Lemma 2 (Schur Complement [3]) Given a 2n× 2n Hermitian matrix:

P =

(
P11 P12

P21 P22

)
, (S4)

where each block is of size n×n, and we have PH
11 = P11, P

H
22 = P22, and PH

12 = P21.
Then

P ≻ 0 ⇔ P11 ≻ 0 and P22 − P21P
−1
11 P12 ≻ 0. (S5)

Lemma 3 Given a matrix P ∈ Cn×n, and a scalar ε > 0,

P
(
εI + PHP

)−1
PH ≺ I. (S6)

Proof Suppose the singular value decomposition of P is given by P = UΣV H, where
U ∈ Cn×n and V ∈ Cn×n are unitary matrices, and Σ = diag(σ) is a real-valued
diagonal matrix. Then, we have

εI + PHP = εI + V Σ2V H = V diag
(
ε1+ σ2

)
V H. (S7)

That is, PHP is diagonalizable with real-valued non-negative eigenvalues
σ2
1 , σ

2
2 , · · · , σ2

n. εI + PHP is nonsingular and its inverse is given by(
εI + PHP

)−1
= V diag

(
1

ε1+ σ2

)
V H. (S8)

Thus, we arrive at the result:

P
(
εI + PHP

)−1
PH = Udiag

(
σ2

ε1+ σ2

)
UH ≺ UUH = I. (S9)

□

2.2 Convergence of the proximal gradient algorithm

The Wirtinger derivatives of F (x) with respect to x and x̄ are given by [4]

∂F (x)

∂x
=
1

2
(|Ax| − y)

H
diag

(
Ax

|Ax|

)
A, (S10)

∂F (x)

∂x̄
=
1

2
(|Ax| − y)

T
diag

(
Ax

|Ax|

)
Ā. (S11)

Let A = [a1,a2, . . . ,am]H where ai ∈ Cn denotes the i-th sampling vector. It
should be noted that, the Wirtinger derivatives are not well-defined for x ∈ Z
where Z is defined as

Z
def
=

{
x ∈ Cn : ∃ 1 ≤ i ≤ M, s.t.aH

i x = 0, ai ̸= 0
}
. (S12)

For any x ∈ Cn\Z, the complex Hessian is defined as

∇2F (x) = Hx̂x̂ =

(
Hxx Hx̄x

Hxx̄ Hx̄x̄

)
, (S13)
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where the four second-order partial derivatives are calculated as follows:

Hxx =
∂

∂x

(
∂F (x)

∂x

)H

=
1

2

∂

∂x

(
AHdiag

(
Ax

|Ax|

)
(|Ax| − y)

)
=
1

2

∂

∂x

(
AHAx−AHdiag(y)

Ax

|Ax|

)
=
1

2
AHA− 1

2
AHdiag(y)

∂

∂x

(
Ax

|Ax|

)
=
1

2
AHA− 1

4
AHdiag

(
y

|Ax|

)
A, (S14)

Hx̄x =
∂

∂x̄

(
∂F (x)

∂x

)H

=
1

2

∂

∂x̄

(
AHAx−AHdiag(y)

Ax

|Ax|

)
=0− 1

2
AHdiag(y)

∂

∂x̄

(
Ax

|Ax|

)
=
1

4
AHdiag(y)diag

(
(Ax)2

|Ax|3

)
Ā, (S15)

Hxx̄ =
∂

∂x

(
∂F (x)

∂x̄

)H

= HH
x̄x

=
1

4
ATdiag(y)diag

(
(Ax)2

|Ax|3

)
A, (S16)

Hx̄x̄ =
∂

∂x̄

(
∂F (x)

∂x̄

)H

= HT
xx

=
1

2
ATĀ− 1

4
ATdiag

(
y

|Ax|

)
Ā. (S17)

We now prove that the gradient of F (x) is upper Lipschitz bounded by a
constant. This is a particularly useful property of the amplitude-based fidelity
term, enabling us to use prespecified algorithm parameters while ensuring
convergence.

Lemma 4 For any x ∈ Cn\Z, the Lipschitz constant for the gradient of the data-
fidelity function ∇F (x) is bounded above by (1/2)ρ(AHA).

Proof We only need to prove that for any τ > (1/2)ρ(AHA), we have

G ≡ τI −Hx̂x̂ =

(
τI −Hxx −Hx̄x

−Hxx̄ τI −Hx̄x̄

)
≻ 0. (S18)
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Let ε = τ − (1/2)ρ
(
AHA

)
> 0 and denote G11, G12, G21, G22 ∈ Cn×n as the four

block matrices of G, we have

G11 =

(
τI − 1

2
AHA

)
+

1

4
AHdiag

(
y

|Ax|

)
A

≻εI +
1

4
AHdiag

(
y

|Ax|

)
A. (S19)

According to Lemma 1(a) and 1(b), we have

G21G
−1
11 G12 ≺ G21

(
εI +

1

4
AHdiag

(
y

|Ax|

)
A

)−1

G12 (S20)

Let P = (1/2)diag
(
(y/|Ax|)1/2

)
A and use Lemma 1(b), we have

G21G
−1
11 G12 ≺ 1

4
ATdiag

(
y

|Ax|

) 1
2

diag

(
(Ax)2

|Ax|2

)
× P

(
εI + PHP

)−1
PHdiag

(
(Ax)2

|Ax|2

)
diag

(
y

|Ax|

) 1
2

Ā

≺ 1

4
ATdiag

(
y

|Ax|

) 1
2

diag

(
(Ax)2

|Ax|2

)
diag

(
(Ax)2

|Ax|2

)
diag

(
y

|Ax|

) 1
2

Ā

≺ 1

4
ATdiag

(
y

|Ax|

)
Ā

≺ 1

4
diag

(
y

|Ax|

)
Ā+

(
λI − 1

2
ATĀ

)
= G22. (S21)

Therefore, according to Lemma 2, G is positive-definite. This implies that for x ∈
Cn\Z the Lipschitz constant of ∇F is upper-bounded by (1/2)ρ(AHA). □

The above Lemma implies that the fidelity function is upper-bounded by a
quadratic function for all x ∈ Cn\Z. The following theorem states that F (x) is
in fact globally upper-bounded by the same quadratic function for all x ∈ Cn.

Lemma 5 Given any z ∈ Cn, the fidelity function F (x) is upper-bounded by a
quadratic function Q(x):

F (x) ≤ Q(x)
def
= F (z) + ⟨∇F (z), x̂− ẑ⟩+ L

2
∥x̂− ẑ∥22, (S22)

where L = (1/2)ρ(AHA).

Proof Let ∆x = x− z, then either of the two following cases occurs:
1) The line between x and z does not pass through any nonsmooth points, i.e.,

z + α∆x ∈ C\Z, ∀α ∈ [0, 1], or x and z lie in the subspace, i.e., z + α∆x ∈ Z, ∀α ∈
[0, 1], the result is obtained directly according to the multivariate Taylor expansion
of F :

F (x) =F (z) + ⟨∇F (z), x̂− ẑ⟩+ 1

2
(x̂− ẑ)H∇2F (u)(x̂− ẑ)
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≤F (z) + ⟨∇F (z), x̂− ẑ⟩+ L

2
∥x̂− ẑ∥22

=Q(x), (S23)

where u is a convex combination of x and z.
2) The line between x and z passes through a finite number of nonsmooth points.

For simplicity, we consider the case of passing through a single nonsmooth point
indexed by j, that is, we have

|aH
j (z + α⋆∆x)| = 0, (S24)

for some 0 < α⋆ < 1. According to 1), for any 0 ≤ α ≤ α⋆, F (x) is upper-bounded
by Q(x). We now prove that this also holds for any α⋆ < α < 1. The fidelity function
can be written as a function over α for any point that lies on the line between x ad z:

g(α) =F (z + α∆x) =

m∑
i=1

fi(z + α∆x)

=

m∑
i=1,i̸=j

fi(z + α∆x) + fj(z + α∆x)

=

m∑
i=1,i̸=j

fi(z + α∆x) +
(
|aH

j (z + α∆x)| − yj

)2

=

m∑
i=1,i̸=j

fi(z + α∆x) +
(
|α− α⋆||aH

j ∆x| − yj

)2

≤
m∑

i=1,i̸=j

fi(z + α∆x) +
(
(α− α⋆)|aH

j ∆x|+ yj

)2

≤h(α). (S25)

where fi(x)
def
= (1/2)(|aH

i x| − yi)
2 and h(α)

def
= Q(z + α∆x). As a result, we have

F (x) = F (z +∆x) = g(1) ≤ h(1) = Q(x). (S26)

The above derivation can be easily extended to the case of multiple nonsmooth points.
With this, we conclude that for any x ∈ Cn, we have

F (x) ≤ Q(x), (S27)

which completes the proof. □

We are now ready to prove the main theorem, which establishes the
convergence of the basic proximal gradient method.

Theorem 1 The basic proximal gradient algorithm (with βt ≡ 0 in Algo-
rithm 1) for the problem of Eq. (3) converges to a stationary point using a
fixed step size γ that satisfies

γ ≤ 2

ρ(AHA)
. (S28)



7

Proof The proof is adapted from Ref. [5]. Recall that the proximal update is given by

x(t+1) = proxγR(x(t) − γ∇xF (x(t))). (S29)

According to Lemma 5, we have that

F (x(t+1)) ≤ Q(x(t+1)) = F (x(t))

+ ⟨∇F (x(t)), x̂(t+1) − x̂(t)⟩+ L

2
∥x̂(t+1) − x̂(t)∥22. (S30)

By the second prox theorem (Theorem 6.39) in Ref. [5], we have

⟨x̂(t) − γ∇F (x(t))− x̂(t+1), x̂(t) − x̂(t+1)⟩

≤ γR(x(t))− γR(x(t+1)), (S31)

from which it follows that

⟨∇F (x(t)), x̂(t+1) − x̂(t)⟩

≤ R(x(t))−R(x(t+1))− 1

γ
∥x̂(t) − x̂(t+1)∥22. (S32)

Let J(x) = F (x) +R(x). Combining Eqs. (S30) and (S32), we arrive at

J(x(t+1)) ≤J(x(t)) +

(
L

2
− 1

γ

)
∥x̂(t) − x̂(t+1)∥22

≤J(x(t))− L

2
∥x̂(t+1) − x̂(t)∥22. (S33)

The second inequality holds because γ ≤ 1/L. Thus, the updating step for each
iteration is upper-bounded:

∥x̂(t+1) − x̂(t)∥22 ≤ 2

L

(
J(x(t))− J(x(t+1))

)
. (S34)

By summing up T iterations, we arrive at

T∑
t=0

∥x̂(t+1) − x̂(t)∥22 ≤ 2

L

T∑
t=0

(
J(x(t))− J(x(t+1))

)
≤ 2

L

(
J(x(0))− J⋆

)
, (S35)

where J⋆ ≥ 0 denotes the global minimum value of the objective function. This
implies that

lim
t→∞

∥x̂(t+1) − x̂(t)∥2 = 0. (S36)

That is, the algorithm converges to a stationary point. □

A similar result has been reported in Ref. [6] regarding the Wirtinger gradi-
ent descent algorithm for ptychographic phase retrieval. We consider the more
general proximal gradient algorithm and present above an alternative proof.

2.3 Convergence of the accelerated gradient projection
algorithm

In order to prove the convergence of the denoising algorithm, we first derive
an upper Lipschitz bound for the gradient of G(w).
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Lemma 6 The Lipschitz constant of the gradient of G(w) is upper-bounded by
γ2ρ(DHD).

Proof The proof is adapted from Ref. [7]. Given any w1,w2 ∈ C2n, we have

∥∇wG(w1)−∇wG(w2)∥2

= γ∥DPC(v − γDHw1)−DPC(v − γDHw2)∥2

≤ γ∥D∥2∥PC(v − γDHw1)−DPC(v − γDHw2)∥2
(b)
≤ γ2∥D∥2∥DHw1 −DHw2∥2

≤ γ2∥D∥22∥w1 −w2∥2

= γ2ρ(DHD)∥w1 −w2∥2, (S37)

where (b) is based on the fact that projection onto convex sets is non-expansive.
□

Theorem 2 Assuming that the constraint set C is closed and convex, the
accelerated gradient projection algorithm for the problem of Eq. (7) converges
to the global optimum using a fixed step size η that satisfies

η ≤ 1

γ2ρ(DHD)
. (S38)

Proof The gradient projection algorithm can be viewed as a special case of the
proximal gradient algorithm with the nonsmooth term being an indicator function.
Because Eq. (6) is a convex optimization problem with a closed and convex C, it is
sufficient to prove that the objective function is Lipschitz continuous with a constant
no greater than γ2ρ(DHD), which is accomplished by Lemma 6. Based on the con-
vergence results of the accelerated proximal gradient algorithm for convex functions
[8], the proof is completed. □

For the particular case of D being the finite difference operator, the Lips-
chitz bound (and thus the step size η) can be explicitly given according to the
following observation.

Lemma 7 If D represents the finite-difference operator defined by Eq. (4), we have

ρ(DHD) ≤ 8. (S39)

Proof Given any x ∈ Cn, we have

∥Dx∥22 =

nξ−1∑
i=1

nυ∑
j=1

|Xi+1,j −Xi,j |2 +

nξ∑
i=1

nυ−1∑
j=1

|Xi,j+1 −Xi,j |2
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≤
nξ∑
i=1

nυ∑
j=1

|Xi+1,j −Xi,j |2 +

nξ∑
i=1

nυ∑
j=1

|Xi,j+1 −Xi,j |2

≤ 2

nξ∑
i=1

nυ∑
j=1

(
|Xi+1,j |2 + |Xi,j |2

)
+ 2

nξ∑
i=1

nυ∑
j=1

(
|Xi,j+1|2 + |Xi,j |2

)

≤ 8

nξ∑
i=1

nυ∑
j=1

|Xi,j |2

= 8∥x∥22, (S40)

which implies that
ρ(DHD) = ∥D∥22 ≤ 8. (S41)

□
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