[1] Wu, Y. et al. Halide perovskite: a promising candidate for next-generation X-ray detectors. Advanced Science 10 , 2205536, doi: 10.1002/advs.202205536 (2023).
[2] Wang, H. Y. et al. A review of perovskite-based photodetectors and their applications. Nanomaterials 12, 4390 (2022). doi: 10.3390/nano12244390
[3] Yaghoobi Nia, N. et al. Perovskite solar cells. in Solar Cells and Light Management (eds Enrichi, F. & Righini, G. C. ) (Amsterdam: Elsevier, 2020), 163–228.
[4] Tang, Z. K. et al. Enhanced optical absorption via cation doping hybrid lead iodine perovskites. Scientific Reports 7, 7843 (2017). doi: 10.1038/s41598-017-08215-3
[5] Chen, Z. L. et al. Thin single crystal perovskite solar cells to harvest below-bandgap light absorption. Nature Communications 8, 1890 (2017). doi: 10.1038/s41467-017-02039-5
[6] Motta, C. , El-Mellouhi, F. & Sanvito, S. Charge carrier mobility in hybrid halide perovskites. Scientific Reports 5 , 12746, doi: 10.1038/srep12746 (2015).
[7] Kulkarni, S. A. et al. Band-gap tuning of lead halide perovskites using a sequential deposition process. Journal of Materials Chemistry A 2, 9221-9225 (2014). doi: 10.1039/C4TA00435C
[8] Amat, A. et al. Cation-Induced band-gap tuning in organohalide perovskites: interplay of spin–orbit coupling and octahedra tilting. Nano Letters 14, 3608-3616 (2014). doi: 10.1021/nl5012992
[9] Ollearo, R. et al. Multidimensional perovskites for high detectivity photodiodes. Advanced Materials 34 , 2205261, doi: 10.1002/adma.202205261 (2022).
[10] Wu, D. et al. Universal strategy for improving perovskite photodiode performance: interfacial built‐in electric field manipulated by unintentional doping. Advanced Science 8 , 2101729, doi: 10.1002/advs.202101729 (2021).
[11] Le, T. S. et al. All‐slot‐die‐coated inverted perovskite solar cells in ambient conditions with chlorine additives. Solar RRL 6, 2100807 (2022). doi: 10.1002/solr.202100807
[12] Zhang, L. H. et al. Ambient inkjet‐printed high‐efficiency perovskite solar cells: manipulating the spreading and crystallization behaviors of picoliter perovskite droplets. Solar RRL 5, 2100106 (2021). doi: 10.1002/solr.202100106
[13] Cai, M. L. et al. Cost‐performance analysis of perovskite solar modules. Advanced Science 4 , 1600269, doi: 10.1002/advs.201600269 (2017).
[14] Brandt, R. E. et al. Searching for “Defect-Tolerant” photovoltaic materials: combined theoretical and experimental screening. Chemistry of Materials 29, 4667-4674 (2017). doi: 10.1021/acs.chemmater.6b05496
[15] Azarhoosh, P. et al. Research update: relativistic origin of slow electron-hole recombination in hybrid halide perovskite solar cells. APL Materials 4, 091501 (2016). doi: 10.1063/1.4955028
[16] Xue, K. et al. Defect investigation in perovskite solar cells by the charge based deep level transient spectroscopy (Q-DLTS). Proceedings of International Conference on Advances in Engineering Research and Application. Cham: Springer, 2019. 204-209.
[17] Vasilev, A. A. et al. Deep-level transient spectroscopy of the charged defects in p-i-n perovskite solar cells induced by light-soaking. Optical Materials: X 16, 100218 (2022). doi: 10.1016/j.omx.2022.100218
[18] Shikoh, A. S. et al. Ion dynamics in single and multi-cation perovskite. ECS Journal of Solid State Science and Technology 9, 065015 (2020). doi: 10.1149/2162-8777/abaaf3
[19] Gonzales, C., Guerrero, A. & Bisquert, J. Transition from capacitive to inductive hysteresis: a neuron-style model to correlate IV curves to impedances of metal halide perovskites. The Journal of Physical Chemistry C 126, 13560-13578 (2022). doi: 10.1021/acs.jpcc.2c02729
[20] Park, J. S. et al. Accumulation of deep traps at grain boundaries in halide perovskites. ACS Energy Letters 4 , 1321-1327, doi: 10.1021/acsenergylett.9b00840 (2019).
[21] Ni, Z. Y. et al. Evolution of defects during the degradation of metal halide perovskite solar cells under reverse bias and illumination. Nature Energy 7, 65-73 (2022).
[22] Di Girolamo, D. et al. Stability and dark hysteresis correlate in NiO‐based perovskite solar cells. Advanced Energy Materials 9, 1901642 (2019). doi: 10.1002/aenm.201901642
[23] Chen, B. et al. Imperfections and their passivation in halide perovskite solar cells. Chemical Society Reviews 48 , 3842-3867, doi: 10.1039/c8cs00853a (2019).
[24] Uratani, H. & Yamashita, K. Charge carrier trapping at surface defects of perovskite solar cell absorbers: a first-principles study. The Journal of Physical Chemistry Letters 8, 742-746 (2017). doi: 10.1021/acs.jpclett.7b00055
[25] Sherkar, T. S. et al. Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions. ACS Energy Letters 2, 1214-1222 (2017). doi: 10.1021/acsenergylett.7b00236
[26] Wang, D. D. et al. Interfacial passivation and energy level alignment regulation for self‐powered perovskite photodetectors with enhanced performance and stability. Advanced Materials Interfaces 9 , 2101766, doi: 10.1002/admi.202101766 (2022).
[27] Lu, J. Y. et al. Back interface passivation for efficient low-bandgap perovskite solar cells and photodetectors. Nanomaterials 12 , 2065, doi: 10.3390/nano12122065 (2022).
[28] Zhao, Y. et al. Surface passivation of CsPbBr3 films by interface engineering in efficient and stable self-powered perovskite photodetector. Journal of Alloys and Compounds 965 , 171434, doi: 10.1016/j.jallcom.2023.171434 (2023).
[29] Kim, W. et al. Highly efficient and stable self-powered perovskite photodiode by cathode-side interfacial passivation with poly(methyl methacrylate). Nanomaterials 13, 619 (2023). doi: 10.3390/nano13030619
[30] Choi, M. et al. Lithography-free broadband ultrathin-film absorbers with gap-plasmon resonance for organic photovoltaics. ACS Applied Materials & Interfaces 8, 12997-13008 (2016).
[31] He, G., Chen, X. S. & Sun, Z. Q. Interface engineering and chemistry of Hf-based high-k dielectrics on III–V substrates. Surface Science Reports 68, 68-107 (2013). doi: 10.1016/j.surfrep.2013.01.002
[32] Aguirre-Tostado, F. S. et al. S passivation of GaAs and band bending reduction upon atomic layer deposition of HfO2/Al2O3 nanolaminates. Applied Physics Letters 93 , 061907, doi: 10.1063/1.2961003 (2008).
[33] Lee, D. H. et al. A study of the surface passivation on GaAs and In/sub 0.53/Ga/sub 0.47/As Schottky-barrier photodiodes using SiO/sub 2/, Si/sub 3/N/sub 4/ and polyimide. IEEE Transactions on Electron Devices 35 , 1695-1696 (1988).
[34] Yakusheva, A. et al. Photo stabilization of p-i-n perovskite solar cells with bathocuproine: MXene. Small 18, 2201730 (2022). doi: 10.1002/smll.202201730
[35] Prateek, Thakur, V. K. & Gupta, R. K. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chemical Reviews 116, 4260-4317 (2016). doi: 10.1021/acs.chemrev.5b00495
[36] Khudyshkina, A. D. et al. Synthesis and characterization of polyacrylonitrile-grafted copolymers based on poly(vinylidene fluoride). Express Polymer Letters 15, 957-971 (2021). doi: 10.3144/expresspolymlett.2021.77
[37] Kleimyuk, E. A. et al. Polyvinylidene fluoride copolymers with grafted polyethyl methacrylate chains: synthesis and thermal and dielectric properties. Polymer Science, Series C 64, 200-210 (2022). doi: 10.1134/S1811238222700138
[38] Chen, X. , Han, X. & Shen, Q. D. PVDF‐based ferroelectric polymers in modern flexible electronics. Advanced Electronic Materials 3 , 1600460, doi: 10.1002/aelm.201600460 (2017).
[39] Jia, E. D. et al. Efficiency enhancement with the ferroelectric coupling effect using P(VDF‐TrFE) in CH3NH3PbI3 solar cells. Advanced Science 6 , 1900252, doi: 10.1002/advs.201900252 (2019).
[40] Cao, F. R. et al. Ultrahigh‐performance flexible and self‐powered photodetectors with ferroelectric P(VDF‐TrFE)/perovskite bulk heterojunction. Advanced Functional Materials 29 , 1808415, doi: 10.1002/adfm.201808415 (2019).
[41] Wang, S. S. et al. Polymer strategies for high-efficiency and stable perovskite solar cells. Nano Energy 82, 105712 (2021). doi: 10.1016/j.nanoen.2020.105712
[42] Wu, Z. F. et al. Passivation strategies for enhancing device performance of perovskite solar cells. Nano Energy 115, 108731 (2023). doi: 10.1016/j.nanoen.2023.108731
[43] Aggarwal, Y. et al. Highly efficient self-powered CH3NH3Pbl3 perovskite photodiode with double-sided poly(methyl methacrylate) passivation layers. Solar Energy Materials and Solar Cells 270, 112815 (2024). doi: 10.1016/j.solmat.2024.112815
[44] Ri, J. H. et al. Effect of polyethylene glycol as additive for fully screen-printable perovskite solar cells. Journal of Electronic Materials 49, 7065-7071 (2020). doi: 10.1007/s11664-020-08249-w
[45] Sathiyan, G. et al. Impact of fluorine substitution in organic functional materials for perovskite solar cell. Dyes and Pigments 198, 110029 (2022). doi: 10.1016/j.dyepig.2021.110029
[46] Sun, R. M. et al. Over 24% Efficient poly(vinylidene fluoride) (PVDF)‐coordinated perovskite solar cells with a photovoltage up to 1.22 V. Advanced Functional Materials 33 , 2210071, doi: 10.1002/adfm.202210071 (2023).
[47] Liu, Y. et al. Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22%. Science Advances 5 , doi: 10.1126/sciadv.aaw2543 (2019).
[48] Jiang, W. et al. Fluorine-containing cyclic surface passivators for perovskite solar cells with improved efficiency and stability. Organic Electronics 122, 106879 (2023). doi: 10.1016/j.orgel.2023.106879
[49] Wang, S. & Li, Q. Design, synthesis and processing of PVDF‐based dielectric polymers. IET Nanodielectrics 1, 80-91 (2018). doi: 10.1049/iet-nde.2018.0003
[50] Nie, J. H. et al. Piezophototronic effect enhanced perovskite solar cell based on P(VDF‐TrFE). Solar RRL 5 , 2100692, doi: 10.1002/solr.202100692 (2021).
[51] Gallet, T. et al. Fermi-level pinning in methylammonium lead iodide perovskites. Nanoscale 11, 16828-16836 (2019). doi: 10.1039/C9NR02643F
[52] Sotthewes, K. et al. Universal fermi-level pinning in transition-metal dichalcogenides. The Journal of Physical Chemistry C 123, 5411-5420 (2019). doi: 10.1021/acs.jpcc.8b10971
[53] Alkhalifah, G. et al. Defect-polaron and enormous light-induced fermi-level shift at halide perovskite surface. The Journal of Physical Chemistry Letters 13, 6711-6720 (2022). doi: 10.1021/acs.jpclett.2c01940
[54] Walsh, A. et al. Self‐regulation mechanism for charged point defects in hybrid halide perovskites. Angewandte Chemie International Edition 54, 1791-1794 (2015). doi: 10.1002/anie.201409740
[55] Shikoh, A. S. et al. On the relation between mobile ion kinetics, device design, and doping in double-cation perovskite solar cells. Applied Physics Letters 118 , 093501, doi: 10.1063/5.0037776 (2021).
[56] Agresti, A. et al. Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells. Nature Materials 18, 1228-1234 (2019). doi: 10.1038/s41563-019-0478-1
[57] Saranin, D. et al. Transition metal carbides (MXenes) for efficient NiO-based inverted perovskite solar cells. Nano Energy 82 , 105771, doi: 10.1016/j.nanoen.2021.105771 (2021).
[58] Di Vito, A. et al. Nonlinear work function tuning of lead-halide perovskites by mxenes with mixed terminations. Advanced Functional Materials 30, 1909028 (2020). doi: 10.1002/adfm.201909028
[59] Li, D. M. et al. New hole transporting materials for planar perovskite solar cells. Chemical Communications 54, 1651-1654 (2018). doi: 10.1039/C7CC08985F
[60] Al-Ashouri, A. et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370, 1300-1309 (2020). doi: 10.1126/science.abd4016
[61] Zhu, Z. L. et al. High‐performance hole‐extraction layer of sol–gel‐processed NiO nanocrystals for inverted planar perovskite solar cells. Angewandte Chemie International Edition 53, 12571-12575 (2014). doi: 10.1002/anie.201405176
[62] Chen, W. et al. Understanding the doping effect on NiO: toward high‐performance inverted perovskite solar cells. Advanced Energy Materials 8 , 1703519, doi: 10.1002/aenm.201703519 (2018).
[63] Snaith, H. J. et al. Anomalous hysteresis in perovskite solar cells. The Journal of Physical Chemistry Letters 5, 1511-1515 (2014). doi: 10.1021/jz500113x
[64] Tress, W. et al. Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy & Environmental Science 8, 995-1004 (2015).
[65] Son, D. Y. et al. Universal approach toward hysteresis-free perovskite solar cell via defect engineering. Journal of the American Chemical Society 140 , 1358-1364, doi: 10.1021/jacs.7b10430 (2018).
[66] Tumen-Ulzii, G. et al. Hysteresis-less and stable perovskite solar cells with a self-assembled monolayer. Communications Materials 1, 31 (2020). doi: 10.1038/s43246-020-0028-z
[67] Pols, M. et al. Atomistic insights into the degradation of inorganic halide perovskite CsPbI3: a reactive force field molecular dynamics study. The Journal of Physical Chemistry Letters 12, 5519-5525 (2021). doi: 10.1021/acs.jpclett.1c01192
[68] Liu, N. & Yam, C. Y. First-principles study of intrinsic defects in formamidinium lead triiodide perovskite solar cell absorbers. Physical Chemistry Chemical Physics 20, 6800-6804 (2018). doi: 10.1039/C8CP00280K
[69] Deger, C. et al. Lattice strain suppresses point defect formation in halide perovskites. Nano Research 15, 5746-5751 (2022). doi: 10.1007/s12274-022-4141-9
[70] Heo, S. et al. Deep level trapped defect analysis in CH3NH3PbI3 perovskite solar cells by deep level transient spectroscopy. Energy & Environmental Science 10 , 1128-1133, doi: 10.1039/c7ee00303j (2017).
[71] Tan, S., Huang, T. Y. & Yang, Y. Defect passivation of perovskites in high efficiency solar cells. Journal of Physics: Energy 3, 042003 (2021). doi: 10.1088/2515-7655/ac2e13
[72] Huang, Z. J. et al. Anion–π interactions suppress phase impurities in FAPbI3 solar cells. Nature 623, 531-537 (2023). doi: 10.1038/s41586-023-06637-w
[73] Gostishchev, P. et al. Cl‐anion engineering for halide perovskite solar cells and modules with enhanced photostability. Solar RRL 7, 2200941 (2023). doi: 10.1002/solr.202200941
[74] Reichert, S. et al. Ionic-defect distribution revealed by improved evaluation of deep-level transient spectroscopy on perovskite solar cells. Physical Review Applied 13, 034018 (2020). doi: 10.1103/PhysRevApplied.13.034018
[75] Futscher, M. H. & Deibel, C. Defect spectroscopy in halide perovskites is dominated by ionic rather than electronic defects. ACS Energy Letters 7, 140-144 (2022). doi: 10.1021/acsenergylett.1c02076
[76] Motti, S. G. et al. Controlling competing photochemical reactions stabilizes perovskite solar cells. Nature Photonics 13, 532-539 (2019).
[77] Taufique, M. F. N. et al. Impact of iodine antisite (IPb) defects on the electronic properties of the (110) CH3NH3PbI3 surface. The Journal of Chemical Physics 149, 164704 (2018). doi: 10.1063/1.5044667
[78] Li, X. D. et al. Chemical anti-corrosion strategy for stable inverted perovskite solar cells. Science Advances 6 , eabd1580, doi: 10.1126/sciadv.abd1580 (2020).
[79] Khan, A. A. et al. Breaking dielectric dilemma via polymer functionalized perovskite piezocomposite with large current density output. Nature Communications 15, 9511 (2024). doi: 10.1038/s41467-024-53846-6
[80] Du, Y. et al. A modulated heterojunction interface via ferroelectric P(VDF-TrFE) towards high performance quasi-2D perovskite self-powered photodetectors. The Journal of Materials Chemistry A 12 , 27518-27526 (2024.
[81] Luo, D. et al. Low‐Dimensional Contact Layers for Enhanced Perovskite Photodiodes. Advanced Functional Materials 30 , 2001692, doi: 10.1002/adfm.202001692 (2020).
[82] Zeiske, S. et al. Light intensity dependence of the photocurrent in organic photovoltaic devices. Cell Reports Physical Science 3, 101096 (2022). doi: 10.1016/j.xcrp.2022.101096
[83] Caprioglio, P. et al. On the relation between the open‐circuit voltage and quasi‐fermi level splitting in efficient perovskite solar cells. Advanced Energy Materials 9 , 1901631, doi: 10.1002/aenm.201901631 (2019).
[84] Bisquert, J., Gonzales, C. & Guerrero, A. Transient on/off photocurrent response of halide perovskite photodetectors. The Journal of Physical Chemistry C 127, 21338-21350 (2023). doi: 10.1021/acs.jpcc.3c04672
[85] Ghahremanirad, E. et al. Inductive loop in the impedance response of perovskite solar cells explained by surface polarization model. The Journal of Physical Chemistry Letters 8, 1402-1406 (2017). doi: 10.1021/acs.jpclett.7b00415
[86] Sakhatskyi, K. et al. Assessing the drawbacks and benefits of ion migration in lead halide perovskites. ACS Energy Letters 7, 3401-3414 (2022). doi: 10.1021/acsenergylett.2c01663
[87] Mahapatra, A. et al. Understanding the origin of light intensity and temperature dependence of photodetection properties in a MAPbBr3 single-crystal-based photoconductor. ACS Photonics 10, 1424-1433 (2023). doi: 10.1021/acsphotonics.3c00033
[88] Ding, J. et al. Unraveling the effect of halogen ion substitution on the noise of perovskite single-crystal photodetectors. The Journal of Physical Chemistry Letters 13, 7831-7837 (2022). doi: 10.1021/acs.jpclett.2c02069
[89] Kato, K. et al. Design of high-speed and high-sensitivity photodiode with an input optical waveguide on semi-insulating InP substrate. Proceedings of LEOS 1992 Summer Topical Meeting Digest on Broadband Analog and Digital Optoelectronics, Optical Multiple Access Networks, Integrated Optoelectronics, and Smart Pixels. Newport, RI, USA: IEEE, 1992, 254-257.
[90] Armin, A. et al. Thick junction broadband organic photodiodes. Laser & Photonics Reviews 8, 924-932 (2014).
[91] Shen, L. et al. A self‐powered, sub‐nanosecond‐response solution‐processed hybrid perovskite photodetector for time‐resolved photoluminescence‐lifetime detection. Advanced Materials 28, 10794-10800 (2016). doi: 10.1002/adma.201603573
[92] Kim, W. et al. Poly(amic acid)-Polyimide Copolymer Interfacial Layers for Self-Powered CH3NH3PbI3 Photovoltaic Photodiodes. Polymers 17(2) , 163, (2025).
[93] Yan, Y. et al. High Performance Perovskite Photodiodes via Molecule-Assisted Interfacial and Bulk Modulations. Small 4 , 2407015, doi: 10.1002/smll.202407015 (2024).
[94] Song, W. et al. Halide Perovskite Photodiode Integrated CMOS Imager, ACS Nano 18 , 52 (2024).
[95] Lecoq, P. Scintillation detectors for charged particles and photons. in Particle Physics Reference Library (eds Fabjan, C. W. & Schopper, H. ) (Cham: Springer, 2020), 45-89.
[96] Hou, B. et al. Materials innovation and electrical engineering in X-ray detection. Nature Reviews Electrical Engineering 1, 639-655 (2024). doi: 10.1038/s44287-024-00086-x
[97] Lin, Z. Y. et al. Structured scintillators for efficient radiation detection. Advanced Science 9 , 2102439, doi: 10.1002/advs.202102439 (2022).
[98] Belsky, A. N. et al. Excitation mechanisms of CsI fast intrinsic luminescence. Journal of Luminescence 72 - 74 , 93-95 (1997).
[99] Khalil, T. et al. Review of flat panel detectors technique for medical imaging quality improvement. AIP Conference Proceedings 2307, 020049 (2020).
[100] Patidar, R. et al. Slot-die coating of perovskite solar cells: an overview. Materials Today Communications 22 , 100808, doi: 10.1016/j.mtcomm.2019.100808 (2020).
[101] Di Giacomo, F. et al. Upscaling inverted perovskite solar cells: optimization of laser scribing for highly efficient mini-modules. Micromachines 11, 1127 (2020). doi: 10.3390/mi11121127
[102] Zhang, M. et al. High-performance photodiode-type photodetectors based on polycrystalline formamidinium lead iodide perovskite thin films. Scientific Reports 8, 11157 (2018). doi: 10.1038/s41598-018-29147-6
[103] Sulaman, M. et al. Interlayer of PMMA doped with au nanoparticles for high-performance tandem photodetectors: a solution to suppress dark current and maintain high photocurrent. ACS Applied Materials & Interfaces 12, 26153-26160 (2020).
[104] Le, T. S. et al. Tailoring wetting properties of organic hole‐transport interlayers for slot‐die‐coated perovskite solar modules. Solar RRL 8 , 2400437, doi: 10.1002/solr.202400437 (2024).