[1] Berestennikov, A. S. et al. Active meta-optics and nanophotonics with halide perovskites. Applied Physics Reviews 6, 031307 (2019). doi: 10.1063/1.5107449
[2] Wang, K. Y. et al. Micro- and nanostructured lead halide perovskites: from materials to integrations and devices. Advanced Materials 33, 2000306 (2021). doi: 10.1002/adma.202000306
[3] Yuan, S. et al. In Situ Crystallization Synthesis of CsPbBr3 Perovskite Quantum Dot-Embedded Glasses with Improved Stability for Solid-State Lighting and Random Upconverted Lasing. ACS Applied Materials & Interfaces 10, 18918-18926 (2018).
[4] Dai, G. et al. Perovskite Quantum Dots Based Optical Fabry–Pérot Pressure Sensor. ACS Photonics 7, 2390-2394 (2020). doi: 10.1021/acsphotonics.0c01109
[5] Lin, J. D. et al. Perovskite quantum dots glasses based backlit displays. ACS Energy Letters 6, 519-528 (2021). doi: 10.1021/acsenergylett.0c02561
[6] Sun, M. X. et al. All-inorganic perovskite nanowires–InGaZnO heterojunction for high-performance ultraviolet–visible photodetectors. ACS Applied Materials & Interfaces 10, 7231-7238 (2018).
[7] Tian, W., Zhou, H. P. & Li, L. Hybrid organic–inorganic perovskite photodetectors. Small 13, 1702107 (2017). doi: 10.1002/smll.201702107
[8] Asuo, I. M. et al. High-performance pseudo-halide perovskite nanowire networks for stable and fast-response photodetector. Nano Energy 51, 324-332 (2018). doi: 10.1016/j.nanoen.2018.06.057
[9] Gu, L. L. et al. 3D arrays of 1024-pixel image sensors based on lead halide perovskite nanowires. Advanced Materials 28, 9713-9721 (2016).
[10] Hu, T. et al. Patterned 2D Perovskite Film with a Preferably Orientated 3D-Like Phase for Efficient Perovskite Solar Cells. Chemistry of Materials 34, 8446-8455 (2022). doi: 10.1021/acs.chemmater.2c02249
[11] Lee, L. et al. Wafer-scale single-crystal perovskite patterned thin films based on geometrically-confined lateral crystal growth. Nature Communications 8, 15882 (2017). doi: 10.1038/ncomms15882
[12] Lamminen, J. et al. Preparation of Air Electrodes and Long Run Tests. Journal of The Electrochemical Society 138, 905 (1991). doi: 10.1149/1.2085745
[13] Schaak, R. E. & Mallouk, T. E. Perovskites by Design: A Toolbox of Solid-State Reactions. Chemistry of Materials 14, 1455-1471 (2002). doi: 10.1021/cm010689m
[14] Wong, Y. J., Hassan, J. & Hashim, M. Dielectric properties, impedance analysis and modulus behavior of CaTiO3 ceramic prepared by solid state reaction. Journal of Alloys and Compounds 571, 138-144 (2013). doi: 10.1016/j.jallcom.2013.03.123
[15] Chen, D. Q. et al. Promoting photoluminescence quantum yields of glass-stabilized CsPbX3 (X = Cl, Br, I) perovskite quantum dots through fluorine doping. Nanoscale 11, 17216-17221 (2019). doi: 10.1039/C9NR07307H
[16] Chilibon, I. & Marat-Mendes, J. N. Ferroelectric ceramics by sol–gel methods and applications: a review. Journal of Sol-Gel Science and Technology 64, 571-611 (2012). doi: 10.1007/s10971-012-2891-7
[17] Assirey, E. A. R. Perovskite synthesis, properties and their related biochemical and industrial application. Saudi Pharmaceutical Journal 27, 817-829 (2019). doi: 10.1016/j.jsps.2019.05.003
[18] Rizvi, N. H. & Apte, P. Developments in laser micro-machining techniques. Journal of Materials Processing Technology 127, 206-210 (2002). doi: 10.1016/S0924-0136(02)00143-7
[19] Wang, Y. et al. Perovskite–Ion Beam Interactions: Toward Controllable Light Emission and Lasing. ACS Applied Materials & Interfaces 11, 15756-15763 (2019).
[20] Liu, Y. et al. Inkjet-Printed Photodetector Arrays Based on Hybrid Perovskite CH3NH3PbI3 Microwires. ACS Applied Materials & Interfaces 9, 11662-11668 (2017).
[21] Liu, Y. et al. Fluorescent Microarrays of in Situ Crystallized Perovskite Nanocomposites Fabricated for Patterned Applications by Using Inkjet Printing. ACS Nano 13, 2042-2049 (2019).
[22] Chanana, A. et al. Ultrafast frequency-agile terahertz devices using methylammonium lead halide perovskites. Science Advances 4, eaar7353 (2018). doi: 10.1126/sciadv.aar7353
[23] Wang, H. L. et al. Nanoimprinted Perovskite Nanograting Photodetector with Improved Efficiency. ACS Nano 10, 10921-10928 (2016). doi: 10.1021/acsnano.6b05535
[24] Pourdavoud, N. et al. Photonic Nanostructures Patterned by Thermal Nanoimprint Directly into Organo-Metal Halide Perovskites. Advanced Materials 29, 1605003 (2017). doi: 10.1002/adma.201605003
[25] Zhizhchenko, A. Y. et al. Directional Lasing from Nanopatterned Halide Perovskite Nanowire. Nano Letters 21, 10019-10025 (2021). doi: 10.1021/acs.nanolett.1c03656
[26] Zhizhchenko, A. Y. et al. Direct imprinting of laser field on halide perovskite single crystal for advanced photonic applications. Laser & Photonics Reviews 15, 2100094 (2021).
[27] Dai, Y. et al. Space-selective precipitation of functional crystals in glass by using a high repetition rate femtosecond laser. Chemical Physics Letters 443, 253-257 (2007). doi: 10.1016/j.cplett.2007.06.076
[28] Wang, Y. B. et al. Toward Long-Term Stable and Highly Efficient Perovskite Solar Cells via Effective Charge Transporting Materials. Advanced Energy Materials 8, 1800249 (2018). doi: 10.1002/aenm.201800249
[29] Wang, W., Tadé, M. O. & Shao, Z. P. Research progress of perovskite materials in photocatalysis-and photovoltaics-related energy conversion and environmental treatment. Chemical Society Reviews 44, 5371-5408 (2015). doi: 10.1039/C5CS00113G
[30] Leupold, N. & Panzer, F. Recent Advances and Perspectives on Powder‐Based Halide Perovskite Film Processing. Advanced Functional Materials 31, 2007350 (2021). doi: 10.1002/adfm.202007350
[31] Qin, K., Dong, B. H. & Wang, S. M. Improving the stability of metal halide perovskite solar cells from material to structure. Journal of energy chemistry 33, 90-99 (2019). doi: 10.1016/j.jechem.2018.08.004
[32] Feng, X. Y. et al. Multi-level anti-counterfeiting and optical information storage based on luminescence of Mn-doped perovskite quantum dots. Advanced Optical Materials 10, 2200706 (2022). doi: 10.1002/adom.202200706
[33] Hoye, R. L. Z. et al. Enhanced performance in fluorene-free organometal halide perovskite light-emitting diodes using tunable, low electron affinity oxide electron injectors. Advanced Materials 27, 1414-1419 (2015). doi: 10.1002/adma.201405044
[34] He, M. H. et al. Chemical decoration of CH3NH3PbI3 perovskites with graphene oxides for photodetector applications. Chemical Communications 51, 9659-9661 (2015). doi: 10.1039/C5CC02282G
[35] Ye, L. et al. Perovskite-polymer hybrid solar cells with near-infrared external quantum efficiency over 40%. Science China Materials 58, 953-960 (2015). doi: 10.1007/s40843-015-0102-x
[36] Tan, Z.-K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnology 9, 687-692 (2014). doi: 10.1038/nnano.2014.149
[37] Laquai, F. All-round perovskites. Nature Materials 13, 429-430 (2014). doi: 10.1038/nmat3953
[38] Liang, T. Y. et al. Fabry–perot mode-limited high-purcell-enhanced spontaneous emission from in situ laser-induced CsPbBr3 quantum dots in CsPb2Br5 microcavities. Nano Letters 22, 355-365 (2022). doi: 10.1021/acs.nanolett.1c04025
[39] Kim, H.-S., Seo, J.-Y. & Park, N.-G. Material and device stability in perovskite solar cells. ChemSusChem 9, 2528-2540 (2016). doi: 10.1002/cssc.201600915
[40] Choi, K. et al. Heat dissipation effects on the stability of planar perovskite solar cells. Energy & Environmental Science 13, 5059-5067 (2020).
[41] Zhao, X. & Park, N.-G. Stability issues on perovskite solar cells. Photonics 2, 1139-1151 (2015). doi: 10.3390/photonics2041139
[42] Liu, X. F. et al. Transparent glass-ceramics functionalized by dispersed crystals. Progress in Materials Science 97, 38-96 (2018). doi: 10.1016/j.pmatsci.2018.02.006
[43] Chou, S. S. et al. Laser direct write synthesis of lead halide perovskites. The Journal of Physical Chemistry Letters 7, 3736-3741 (2016). doi: 10.1021/acs.jpclett.6b01557
[44] Arciniegas, M. P. et al. Laser-induced localized growth of methylammonium lead halide perovskite nano- and microcrystals on substrates. Advanced Functional Materials 27, 1701613 (2017). doi: 10.1002/adfm.201701613
[45] Huang, X. J. et al. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium. Nature Photonics 14, 82-88 (2020). doi: 10.1038/s41566-019-0538-8
[46] Huang, X. J. et al. Three-Dimensional Laser-Assisted Patterning of Blue-Emissive Metal Halide Perovskite Nanocrystals inside a Glass with Switchable Photoluminescence. ACS Nano 14, 3150-3158 (2020). doi: 10.1021/acsnano.9b08314
[47] Li, M. J. et al. Coupling localized laser writing and nonlocal recrystallization in perovskite crystals for reversible multidimensional optical encryption. Advanced Materials 34, 2201413 (2022). doi: 10.1002/adma.202201413
[48] Chen, Q. P. et al. Three-dimensional laser writing aligned perovskite quantum dots in glass for polarization-sensitive anti-counterfeiting. Advanced Optical Materials 11, 2300090 (2023). doi: 10.1002/adom.202300090
[49] Sun, S. Z. et al. Low-power-consumption, reversible 3d optical storage based on selectively laser-induced photoluminescence degradation in CsPbBr3 quantum dots doped glass. Advanced Materials Technologies 7, 2200470 (2022). doi: 10.1002/admt.202200470
[50] Ye, Y. et al. Highly luminescent cesium lead halide perovskite nanocrystals stabilized in glasses for light-emitting applications. Advanced Optical Materials 7, 1801663 (2019). doi: 10.1002/adom.201801663
[51] Ning, Z. J. et al. Quantum-dot-in-perovskite solids. Nature 523, 324-328 (2015). doi: 10.1038/nature14563
[52] Lou, S. Q. et al. Chemical transformation of lead halide perovskite into insoluble, less cytotoxic, and brightly luminescent CsPbBr3/CsPb2Br5 composite nanocrystals for cell Imaging. ACS Applied Materials & Interfaces 11, 24241-24246 (2019).
[53] Zou, T. Y. et al. Enhanced UV-C detection of perovskite photodetector arrays via inorganic CsPbBr3 quantum dot down-conversion Layer. Advanced Optical Materials 7, 1801812 (2019). doi: 10.1002/adom.201801812
[54] Jean, J. Getting high with quantum dot solar cells. Nature Energy 5, 10-11 (2020). doi: 10.1038/s41560-019-0534-8
[55] Chen, J. et al. Perovskite quantum dot lasers. InfoMat 2, 170-183 (2020). doi: 10.1002/inf2.12051
[56] Liu, J. X. et al. InGaN-Based Quantum Well Superluminescent Diode Monolithically Grown on Si. ACS Photonics 6, 2104-2109 (2019). doi: 10.1021/acsphotonics.9b00657
[57] Zou, C. et al. Photolithographic patterning of perovskite thin films for multicolor display applications. Nano Letters 20, 3710-3717 (2020). doi: 10.1021/acs.nanolett.0c00701
[58] Sun, K. et al. Highly emissive deep-red perovskite quantum dots in glass: photoinduced thermal engineering and applications. Advanced Optical Materials 9, 2100094 (2021). doi: 10.1002/adom.202100094
[59] Tan, D. Z. et al. Photo-processing of perovskites: current research status and challenges. Opto-Electronic Science 1, 220014 (2022). doi: 10.29026/oes.2022.220014
[60] Zhan, W. J. et al. In situ patterning perovskite quantum dots by direct laser writing fabrication. ACS Photonics 8, 765-770 (2021). doi: 10.1021/acsphotonics.1c00118
[61] Liang, S.-Y. et al. High-resolution in situ patterning of perovskite quantum dots via femtosecond laser direct writing. Nanoscale 14, 1174-1178 (2022). doi: 10.1039/D1NR07516K
[62] Jiang, Y. Z. et al. Spectra stable blue perovskite light-emitting diodes. Nature Communications 10, 1868 (2019). doi: 10.1038/s41467-019-09794-7
[63] Zheng, X. P. et al. Chlorine vacancy passivation in mixed halide perovskite quantum dots by organic pseudohalides enables efficient rec. 2020 blue light-emitting diodes. ACS Energy Letters 5, 793-798 (2020).
[64] Wang, H. R. et al. Efficient CsPbBr3 nanoplatelet-based blue light-emitting diodes enabled by engineered surface ligands. ACS Energy Letters 7, 1137-1145 (2022). doi: 10.1021/acsenergylett.1c02642
[65] Sun, K. et al. Pure blue perovskites nanocrystals in glass: ultrafast laser direct writing and bandgap tuning. Laser & Photonics Reviews 17, 2200902 (2023).
[66] Nohria, R. et al. Humidity sensor based on ultrathin polyaniline film deposited using layer-by-layer nano-assembly. Sensors and Actuators B: Chemical 114, 218-222 (2006). doi: 10.1016/j.snb.2005.04.034
[67] Chen, M. S. et al. Highly Stable Waterborne Luminescent Inks Based on MAPbBr3@PbBr(OH) Nanocrystals for LEDs and Anticounterfeit Applications. ACS Applied Materials & Interfaces 13, 20622-20632 (2021).
[68] Zhao, W. C. et al. Fullerene-Free Polymer Solar Cells with over 11% Efficiency and Excellent Thermal Stability. Advanced Materials 28, 4734-4739 (2016). doi: 10.1002/adma.201600281
[69] Song, W. D. et al. Self-Powered MXene/GaN van der Waals Heterojunction Ultraviolet Photodiodes with Superhigh Efficiency and Stable Current Outputs. Advanced Materials 33, 2101059 (2021). doi: 10.1002/adma.202101059
[70] Peng, Q. P. et al. Up-converted long persistent luminescence from CsPbBr3 nanocrystals in glass. Laser & Photonics Reviews 16, 2200449 (2022).
[71] Miao, Y. et al. Designable layer edge states in quasi-2d perovskites induced by femtosecond pulse laser. Advanced Science 9, 2201046 (2022). doi: 10.1002/advs.202201046
[72] Jin, M. F. F. et al. The inhibition of CsPbBr3 nanocrystals glass from self-crystallization with the assistance of ZnO modulation for rewritable data storage. Chemical Engineering Journal 427, 129812 (2022). doi: 10.1016/j.cej.2021.129812
[73] Hu, Y. Z. et al. Femtosecond-Laser-Induced Precipitation of CsPbBr3 Perovskite Nanocrystals in Glasses for Solar Spectral Conversion. ACS Applied Nano Materials 3, 850-857 (2020). doi: 10.1021/acsanm.9b02362
[74] Xing, J. et al. Dramatically enhanced photoluminescence from femtosecond laser induced micro-/nanostructures on MAPbBr3 single crystal surface. Advanced Optical Materials 6, 1800411 (2018). doi: 10.1002/adom.201800411
[75] Shi, Y. Q. et al. Laser-induced secondary crystallization of CsPbBr3 perovskite film for robust and low threshold amplified spontaneous emission. Advanced Functional Materials 32, 2207206 (2022). doi: 10.1002/adfm.202207206
[76] Kong, W. C. et al. Enhancing perovskite solar cell performance through femtosecond laser polishing. Solar RRL 4, 2000189 (2020). doi: 10.1002/solr.202000189
[77] Song, C. P. et al. Ultrafast femtosecond pressure modulation of structure and exciton kinetics in 2d halide perovskites for enhanced light response and stability. Nature Communications 12, 4879 (2021). doi: 10.1038/s41467-021-25140-2
[78] Rajan, R. A. et al. Space-resolved light emitting and lasing behaviors of crystalline perovskites upon femtosecond laser ablation. Materials Today Physics 31, 101000 (2023). doi: 10.1016/j.mtphys.2023.101000
[79] Du, W. N. et al. Strong exciton–photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry-Pérot cavity. ACS Photonics 5, 2051-2059 (2018). doi: 10.1021/acsphotonics.7b01593
[80] Polushkin, A. S. et al. Single-particle perovskite lasers: from material properties to cavity design. Nanophotonics 9, 599-610 (2020). doi: 10.1515/nanoph-2019-0443
[81] Zhang, Q. et al. Halide perovskite semiconductor lasers: materials, cavity design, and low threshold. Nano Letters 21, 1903-1914 (2021). doi: 10.1021/acs.nanolett.0c03593
[82] Lee, W. et al. Ultralow thermal conductivity in all-inorganic halide perovskites. Proceedings of the National Academy of Sciences of the United States of America 114, 8693-8697 (2017).
[83] Wang, C. et al. How to fabricate efficient perovskite solar mini-modules in lab. Journal of Power Sources 466, 228321 (2020). doi: 10.1016/j.jpowsour.2020.228321
[84] Bayer, L. et al. Studies on perovskite film ablation and scribing with ns-, ps- and fs-laser pulses. Applied Physics A 123, 619 (2017). doi: 10.1007/s00339-017-1234-5
[85] Bäuerle, D. Thermal, photophysical, and photochemical processes. In Laser Processing and Chemistry (ed Bäuerle, D. ) (Berlin: Springer, 2011), 13-38.
[86] Deng, K. M. et al. Nanoimprinted grating-embedded perovskite solar cells with improved light management. Advanced Functional Materials 29, 1900830 (2019). doi: 10.1002/adfm.201900830
[87] Tong, G. Q. et al. 2d derivative phase induced growth of 3d all inorganic perovskite micro–nanowire array based photodetectors. Advanced Functional Materials 30, 2002526 (2020).
[88] Tian, X. Y. et al. Triangular micro-grating via femtosecond laser direct writing toward high-performance polarization-sensitive perovskite photodetectors. Advanced Optical Materials 10, 2200856 (2022). doi: 10.1002/adom.202200856
[89] Zhang, L. W. et al. In situ localized formation of cesium lead bromide nanocomposites for fluorescence micro-patterning technology achieved by organic solvent polymerization. Journal of Materials Chemistry C 8, 3409-3417 (2020).
[90] Kang, M. S., Han, C. & Jeon, H. Submicrometer-scale pattern generation via maskless digital photolithography. Optica 7, 1788-1795 (2020). doi: 10.1364/OPTICA.406304
[91] del Barrio, J. & Sánchez-Somolinos, C. Light to shape the future: from photolithography to 4d printing. Advanced Optical Materials 7, 1900598 (2019). doi: 10.1002/adom.201900598
[92] Zhuang, Y. X. et al. X-ray-charged bright persistent luminescence in NaYF4: Ln3+@NaYF4 nanoparticles for multidimensional optical information storage. Light: Science & Applications 10, 132 (2021).
[93] Shah, M. A. et al. Classifications and applications of inkjet printing technology: a review. IEEE Access 9, 140079-140102 (2021). doi: 10.1109/ACCESS.2021.3119219
[94] Zhang, G. N. et al. Critical Size/Viscosity for Coffee-Ring-Free Printing of Perovskite Micro/Nanopatterns. ACS Applied Materials & Interfaces 14, 14712-14720 (2022).
[95] Dun, G.-H. et al. Wafer-Scale Photolithography-Pixeled Pb-Free Perovskite X-ray Detectors. ACS Nano 16, 10199-10208 (2022). doi: 10.1021/acsnano.2c01074
[96] Kosasih, F. U. et al. Electron Microscopy Characterization of P3 Lines and Laser Scribing-Induced Perovskite Decomposition in Perovskite Solar Modules. ACS Applied Materials & Interfaces 11, 45646-45655 (2019).
[97] Wang, C. W. et al. Femtosecond laser direct ablating micro/nanostructures and micropatterns on CH3NH3PbI3 single crystal. IEEE Photonics Journal 9, 24001 10 (2017).
[98] Liang, S.-Y. et al. High-resolution patterning of 2d perovskite films through femtosecond laser direct writing. Advanced Functional Materials 32, 0224957 (2022). doi: 10.1002/adfm.202204957
[99] Liang, S.-Y. et al. High-quality patterning of CsPbBr3 perovskite films through lamination-assisted femtosecond laser ablation toward light-emitting diodes. ACS Applied Materials & Interfaces 14, 46958-46963 (2022).
[100] Liang, S.-Y. et al. Femtosecond laser regulatory focus ablation patterning of a fluorescent film up to 1/10 of the scale of the diffraction limit. Nanoscale 15, 5494-5498 (2023). doi: 10.1039/D2NR06946F
[101] Liu, P. et al. Air-stable High-PLQY cesium lead halide perovskites for laser-patterned displays. Journal of Materials Chemistry C 11, 2282-2290 (2023). doi: 10.1039/D2TC04445E
[102] Kim, G.-W. & Petrozza, A. Defect tolerance and intolerance in metal-halide perovskites. Advanced Energy Materials 10, 2001959 (2020). doi: 10.1002/aenm.202001959
[103] Lu, P. et al. Metal halide perovskite nanocrystals and their applications in optoelectronic devices. InfoMat 1, 430-459 (2019). doi: 10.1002/inf2.12031
[104] Lim, S.-H. et al. Semi-transparent perovskite solar cells with bidirectional transparent electrodes. Nano Energy 82, 105703 (2021). doi: 10.1016/j.nanoen.2020.105703
[105] Zhizhchenko, A. Y. et al. Light-emitting nanophotonic designs enabled by ultrafast laser processing of Halide Perovskites. Small 16, 2000410 (2020). doi: 10.1002/smll.202000410
[106] Zhao, J. J. et al. Nonthermal laser ablation of high-efficiency semitransparent and aesthetic perovskite solar cells. Nanophotonics 11, 987-993 (2022). doi: 10.1515/nanoph-2021-0683
[107] Eperon, G. E. et al. Efficient, semitransparent neutral-colored solar cells based on microstructured formamidinium lead trihalide perovskite. The Journal of Physical Chemistry Letters 6, 129-138 (2015). doi: 10.1021/jz502367k
[108] Zhang, L. J. et al. Near-neutral-colored semitransparent perovskite films using a combination of colloidal self-assembly and plasma etching. Solar Energy Materials and Solar Cells 160, 193-202 (2017). doi: 10.1016/j.solmat.2016.10.035
[109] Hörantner, M. T. et al. Templated microstructural growth of perovskite thin films via colloidal monolayer lithography. Energy & Environmental Science 8, 2041-2047 (2015).
[110] Aharon, S. et al. Self-assembly of perovskite for fabrication of semitransparent perovskite solar cells. Advanced Materials Interfaces 2, 1500118 (2015). doi: 10.1002/admi.201500118
[111] Oh, J. W. et al. Metal–organic framework-assisted metal-ion doping in all-inorganic perovskite for dual-mode image sensing display. Advanced Functional Materials 32, 2111894 (2022). doi: 10.1002/adfm.202111894
[112] Qi, X. et al. Photonics and optoelectronics of 2d metal-halide perovskites. Small 14, 1800682 (2018). doi: 10.1002/smll.201800682
[113] Züchner, T., Failla, A. V. & Meixner, A. J. Light microscopy with doughnut modes: a concept to detect, characterize, and manipulate individual nanoobjects. Angewandte Chemie International Edition 50, 5274-5293 (2011). doi: 10.1002/anie.201005845
[114] Rahman, L. et al. Microplastics and nanoplastics science: collecting and characterizing airborne microplastics in fine particulate matter. Nanotoxicology 15, 1253-1278 (2021). doi: 10.1080/17435390.2021.2018065
[115] Hecht, B. et al. Scanning near-field optical microscopy with aperture probes: fundamentals and applications. The Journal of Chemical Physics 112, 7761-7774 (2000). doi: 10.1063/1.481382
[116] Shaltout, A. M., Shalaev, V. M. & Brongersma, M. L. Spatiotemporal light control with active metasurfaces. Science 364, eaat3100 (2019). doi: 10.1126/science.aat3100
[117] Chen, M. K. et al. Principles, functions, and applications of optical meta-lens. Advanced Optical Materials 9, 2001414 (2021). doi: 10.1002/adom.202001414
[118] Cherepakhin, A. et al. 2d perovskite micro-optics enabled by direct femtosecond-laser projection lithography. Journal of Physics: Conference Series 2015, 012075 (2021).
[119] Wang, Z. Y. et al. Flat lenses based on 2d perovskite nanosheets. Advanced Materials 32, 2001388 (2020). doi: 10.1002/adma.202001388
[120] Yang, W. K. et al. Detour-phased perovskite ultrathin planar lens using direct femtosecond laser writing. Photonics Research 10, 2768-2777 (2022). doi: 10.1364/PRJ.472321
[121] Monroy, I. T. et al. Interferometric crosstalk reduction by phase scrambling. Journal of Lightwave Technology 18, 637-646 (2000). doi: 10.1109/50.842077
[122] Kawanishi, T. et al. Electrically tunable delay line using an optical single-side-band modulator. IEEE Photonics Technology Letters 14, 1454-1456 (2002). doi: 10.1109/LPT.2002.802387
[123] Zeng, F. & Yao, J. P. Investigation of phase-modulator-based all-optical bandpass microwave filter. Journal of Lightwave Technology 23, 1721-1728 (2005). doi: 10.1109/JLT.2005.844499
[124] Zhang, Z. M. et al. Directional laser from solution-grown grating-patterned perovskite single-crystal microdisks. Angewandte Chemie International Edition 61, e202205636 (2022). doi: 10.1002/anie.202205636
[125] Fang, H.-H. et al. Whispering-gallery mode lasing from patterned molecular single-crystalline microcavity array. Laser & Photonics Reviews 7, 281-288 (2013).
[126] Zhizhchenko, A. et al. Single-mode lasing from imprinted halide-perovskite microdisks. ACS Nano 13, 4140-4147 (2019). doi: 10.1021/acsnano.8b08948
[127] Shishkin, I. et al. Single-step direct laser writing of halide perovskite microlasers. Applied Physics Express 12, 122001 (2019). doi: 10.7567/1882-0786/ab4b1b
[128] Xing, G. C. et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nature Materials 13, 476-480 (2014). doi: 10.1038/nmat3911
[129] Yang, S. C., Wang, Y. & Sun, H. D. Advances and prospects for whispering gallery mode microcavities. Advanced Optical Materials 3, 1136-1162 (2015). doi: 10.1002/adom.201500232
[130] Biswas, A. et al. Advances in top–down and bottom–up surface nanofabrication: techniques, applications & future prospects. Advances in Colloid and Interface Science 170, 2-27 (2012). doi: 10.1016/j.cis.2011.11.001
[131] Tian, X. Y. et al. Femtosecond laser direct writing of perovskite patterns with whispering gallery mode lasing. Journal of Materials Chemistry C 8, 7314-7321 (2020). doi: 10.1039/D0TC01839B
[132] Tian, X. Y. et al. Whispering Gallery Mode Lasing from Perovskite Polygonal Microcavities via Femtosecond Laser Direct Writing. ACS Applied Materials & Interfaces 13, 16952-16958 (2021).
[133] Luo, X. X. et al. Fully deterministic analysis on photonic whispering-gallery modes of irregular polygonal microcavities with testing in hexagons. Physical Review A 103, L031503 (2021). doi: 10.1103/PhysRevA.103.L031503
[134] Spiridonov, A. O., Karchevskii, E. M. & Nosich, A. I. Mathematical and numerical modeling of on-threshold modes of 2-d microcavity lasers with piercing holes. Axioms 8, 101 (2019). doi: 10.3390/axioms8030101
[135] Wiersig, J. Hexagonal dielectric resonators and microcrystal lasers. Physical Review A 67, 023807 (2003). doi: 10.1103/PhysRevA.67.023807
[136] Dong, H. Y. et al. Materials chemistry and engineering in metal halide perovskite lasers. Chemical Society Reviews 49, 951-982 (2020). doi: 10.1039/C9CS00598F
[137] Liang, S.-Y. et al. High-resolution in situ crystallization and patterning of a CsPbBr3 film via femtosecond laser printing. ACS Photonics 10, 3188-3194 (2023). doi: 10.1021/acsphotonics.3c00568
[138] Liang, S.-Y. et al. High-resolution patterning of perovskite quantum dots via femtosecond laser-induced forward transfer. Nano Letters 23, 3769-3774 (2023). doi: 10.1021/acs.nanolett.3c00006