[1] Bacon, C. P., Mattley, Y. & DeFrece, R. Miniature spectroscopic instrumentation: Applications to biology and chemistry. Review of Scientific Instruments 75, 1-16 (2004). doi: 10.1063/1.1633025
[2] Seunggoo, K. , Son, D. & Park, J. Electronic device comprising plurality of light sources. (2021).
[3] Xia, Z. X. et al. High resolution on-chip spectroscopy based on miniaturized microdonut resonators. Optics Express 19, 12356-12364 (2011). doi: 10.1364/OE.19.012356
[4] Kita, D. M. et al. High-performance and scalable on-chip digital Fourier transform spectroscopy. Nature Communications 9, 4405 (2018). doi: 10.1038/s41467-018-06773-2
[5] Yang, Z. Y. et al. Miniaturization of optical spectrometers. Science 371, eabe0722 (2021). doi: 10.1126/science.abe0722
[6] Edwards, P. et al. Smartphone based optical spectrometer for diffusive reflectance spectroscopic measurement of hemoglobin. Scientific Reports 7, 12224 (2017). doi: 10.1038/s41598-017-12482-5
[7] Malinen, J. et al. Advances in miniature spectrometer and sensor development. Proceedings of SPIE 9101, Next-Generation Spectroscopic Technologies VII. Baltimore, MD, USA: SPIE, 2014.
[8] Ebermann, M. et al. Tunable MEMS Fabry-Pérot filters for infrared microspectrometers: a review. Proceedings of SPIE 9760, MOEMS and Miniaturized Systems XV. San Francisco, CA, USA: SPIE, 2016.
[9] Cheng, R. S. et al. Broadband on-chip single-photon spectrometer. Nature Communications 10, 4104 (2019). doi: 10.1038/s41467-019-12149-x
[10] Zhu, A. Y. et al. Ultra-compact visible chiral spectrometer with meta-lenses. APL Photonics 2, 036103 (2017). doi: 10.1063/1.4974259
[11] Yang, C. et al. Demonstration of a PDMS based hybrid grating and Fresnel lens (G-Fresnel) device. Optics Express 18, 23529-23534 (2010). doi: 10.1364/OE.18.023529
[12] Subramanian, A. Z. et al. Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [invited]. Photonics Research 3, B47-B59 (2015). doi: 10.1364/PRJ.3.000B47
[13] Gao, B. S., Shi, Z. M. & Boyd, R. W. Design of flat-band superprism structures for on-chip spectroscopy. Optics Express 23, 6491-6496 (2015). doi: 10.1364/OE.23.006491
[14] Cheben, P. et al. A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides. Optics Express 15, 2299-2306 (2007). doi: 10.1364/OE.15.002299
[15] Tittl, A. et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 360, 1105-1109 (2018). doi: 10.1126/science.aas9768
[16] Bao, J. & Bawendi, M. G. A colloidal quantum dot spectrometer. Nature 523, 67-70 (2015). doi: 10.1038/nature14576
[17] Zhu, X. X. et al. Broadband perovskite quantum dot spectrometer beyond human visual resolution. Light: Science & Applications 9 , 73 (2020).
[18] Wang, S. W. et al. Concept of a high-resolution miniature spectrometer using an integrated filter array. Optics Letters 32, 632-634 (2007). doi: 10.1364/OL.32.000632
[19] Pervez, N. K. et al. Photonic crystal spectrometer. Optics Express 18, 8277-8285 (2010). doi: 10.1364/OE.18.008277
[20] Redding, B. et al. Compact spectrometer based on a disordered photonic chip. Nature Photonics 7, 746-751 (2013). doi: 10.1038/nphoton.2013.190
[21] Hartmann, W. et al. Waveguide-integrated broadband spectrometer based on tailored disorder. Advanced Optical Materials 8, 1901602 (2020). doi: 10.1002/adom.201901602
[22] Redding, B., Popoff, S. M. & Cao, H. All-fiber spectrometer based on speckle pattern reconstruction. Optics Express 21, 6584-6600 (2013). doi: 10.1364/OE.21.006584
[23] Wang, P. & Menon, R. Computational spectrometer based on a broadband diffractive optic. Optics Express 22, 14575-14587 (2014). doi: 10.1364/OE.22.014575
[24] Yang, T. et al. Miniature spectrometer based on diffraction in a dispersive hole array. Optics Letters 40, 3217-3220 (2015). doi: 10.1364/OL.40.003217
[25] Redding, B. et al. Evanescently coupled multimode spiral spectrometer. Optica 3, 956-962 (2016). doi: 10.1364/OPTICA.3.000956
[26] Lee, K. S., Thompson, K. P. & Rolland, J. P. Broadband astigmatism-corrected Czerny-Turner spectrometer. Optics Express 18, 23378-23384 (2010). doi: 10.1364/OE.18.023378
[27] Chen, T. A. et al. Correction of astigmatism and coma using analytic theory of aberrations in imaging spectrometer based on concentric off-axis dual reflector system. Applied Optics 53, 565-576 (2014). doi: 10.1364/AO.53.000565
[28] Brown, B. R. & Lohmann, A. W. Complex spatial filtering with binary masks. Applied Optics 5, 967-969 (1966). doi: 10.1364/AO.5.000967
[29] Yang, W. K. et al. Detour-phased perovskite ultrathin planar lens using direct femtosecond laser writing. Photonics Research 10, 2768-2777 (2022). doi: 10.1364/PRJ.472321
[30] Wei, S. B. et al. High tolerance detour-phase graphene-oxide flat lens. Photonics Research 9, 2454-2463 (2021). doi: 10.1364/PRJ.434599
[31] Gu, M. Advanced Optical Imaging Theory. (Berlin: Springer, 2000).
[32] Zheng, X. R. et al. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing. Nature Communications 6, 8433 (2015). doi: 10.1038/ncomms9433
[33] Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Letters 8, 902-907 (2008). doi: 10.1021/nl0731872
[34] Wu, J. Y. et al. Graphene oxide for photonics, electronics and optoelectronics. Nature Reviews Chemistry 7, 162-183 (2023). doi: 10.1038/s41570-022-00458-7
[35] Lin, H. et al. Engineering van der Waals materials for advanced metaphotonics. Chemical Reviews 122, 15204-15355 (2022). doi: 10.1021/acs.chemrev.2c00048
[36] Wei, S. B. et al. A varifocal graphene metalens for broadband zoom imaging covering the entire visible region. ACS Nano 15, 4769-4776 (2021). doi: 10.1021/acsnano.0c09395