[1] Nepal, D. et al. Hierarchically structured bioinspired nanocomposites. Nature Materials 22, 18-35 (2023). doi: 10.1038/s41563-022-01384-1
[2] Leem, J. W. et al. Edible unclonable functions. Nature Communications 11, 328 (2020). doi: 10.1038/s41467-019-14066-5
[3] Li, S. et al. Humidity-sensitive chemoelectric flexible sensors based on metal-air redox reaction for health management. Nature Communications 13, 5416 (2022). doi: 10.1038/s41467-022-33133-y
[4] Hu, Y. W. et al. Flexible and biocompatible physical unclonable function anti-counterfeiting label. Advanced Functional Materials 31, 2102108 (2021). doi: 10.1002/adfm.202102108
[5] Wu, R. H., Ma, L. Y. & Liu, X. Y. From mesoscopic functionalization of silk fibroin to smart fiber devices for textile electronics and photonics. Advanced Science 9, 2103981 (2022). doi: 10.1002/advs.202103981
[6] Zhu, B. et al. Subambient daytime radiative cooling textile based on nanoprocessed silk. Nature Nanotechnology 16, 1342-1348 (2021). doi: 10.1038/s41565-021-00987-0
[7] Lee, W. et al. A rewritable optical storage medium of silk proteins using near-field nano-optics. Nature Nanotechnology 15, 941-947 (2020). doi: 10.1038/s41565-020-0755-9
[8] Rockwood, D. N. et al. Materials fabrication from Bombyx mori silk fibroin. Nature Protocols 6, 1612-1631 (2011). doi: 10.1038/nprot.2011.379
[9] Omenetto, F. G. & Kaplan, D. L. New opportunities for an ancient material. Science 329, 528-531 (2010). doi: 10.1126/science.1188936
[10] Zheng, N. et al. Photoacoustic carbon nanotubes embedded silk scaffolds for neural stimulation and regeneration. ACS Nano 16, 2292-2305 (2022). doi: 10.1021/acsnano.1c08491
[11] Wang, Q. J. et al. Protein secondary structure in spider silk nanofibrils. Nature Communications 13, 4329 (2022). doi: 10.1038/s41467-022-31883-3
[12] Tang-Schomer, M. D. et al. Film-based implants for supporting neuron–electrode integrated interfaces for the brain. Advanced Functional Materials 24, 1938-1948 (2014). doi: 10.1002/adfm.201303196
[13] Hwang, S. W. et al. A physically transient form of silicon electronics. Science 337, 1640-1644 (2012). doi: 10.1126/science.1226325
[14] Kim, T. I. et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340, 211-216 (2013). doi: 10.1126/science.1232437
[15] Barr, M. C. et al. Direct monolithic integration of organic photovoltaic circuits on unmodified paper. Advanced Materials 23, 3500-3505 (2011). doi: 10.1002/adma.201101263
[16] Hübler, A. et al. Printed paper photovoltaic cells. Advanced Energy Materials 1, 1018-1022 (2011). doi: 10.1002/aenm.201100394
[17] Dong, X. Y. et al. Silk fibroin based conductive film for multifunctional sensing and energy harvesting. Advanced Fiber Materials 4, 885-893 (2022). doi: 10.1007/s42765-022-00152-9
[18] Candido, I. C. M. et al. PVA-silk fibroin bio-based triboelectric nanogenerator. Nano Energy 105, 108035 (2023).
[19] Wang, Y. et al. Controlling silk fibroin conformation for dynamic, responsive, multifunctional, micropatterned surfaces. Proceedings of the National Academy of Sciences of the United States of America 116, 21361-21368 (2019).
[20] Kim, S. et al. All-water-based electron-beam lithography using silk as a resist. Nature Nanotechnology 9, 306-310 (2014). doi: 10.1038/nnano.2014.47
[21] Qin, N. et al. 3D electron-beam writing at sub-15 nm resolution using spider silk as a resist. Nature Communications 12, 5133 (2021).
[22] Zhou, Z. T. et al. Engineering the future of silk materials through advanced manufacturing. Advanced Materials 30, 1706983 (2018). doi: 10.1002/adma.201706983
[23] Jiang, J. J. et al. Protein bricks: 2D and 3D bio-nanostructures with shape and function on demand. Advanced Materials 30, 1705919 (2018). doi: 10.1002/adma.201705919
[24] Amsden, J. J. et al. Rapid nanoimprinting of silk fibroin films for biophotonic applications. Advanced Materials 22, 1746-1749 (2010). doi: 10.1002/adma.200903166
[25] Zhu, S. H. et al. Using wool keratin as a basic resist material to fabricate precise protein patterns. Advanced Materials 31, 1900870 (2019). doi: 10.1002/adma.201900870
[26] Tao, H. et al. Inkjet printing of regenerated silk fibroin: from printable forms to printable functions. Advanced Materials 27, 4273-4279 (2015). doi: 10.1002/adma.201501425
[27] Li, C. M. et al. Fiber-based biopolymer processing as a route toward sustainability. Advanced Materials 34, 2105196 (2022). doi: 10.1002/adma.202105196
[28] Liu, W. P. et al. Precise protein photolithography (P3): high performance biopatterning using silk fibroin light chain as the resist. Advanced Science 4, 1700191 (2017). doi: 10.1002/advs.201700191
[29] Sun, H. & Marelli, B. Polypeptide templating for designer hierarchical materials. Nature Communications 11, 351 (2020). doi: 10.1038/s41467-019-14257-0
[30] Guo, C. C. et al. Thermoplastic moulding of regenerated silk. Nature Materials 19, 102-108 (2020). doi: 10.1038/s41563-019-0560-8
[31] Yan, J. F. et al. Sliding wear behavior of fully nanotwinned Cu alloys. Friction 7, 260-267 (2019). doi: 10.1007/s40544-018-0220-z
[32] Jiang, H. B. et al. Bioinspired fabrication of superhydrophobic graphene films by two-beam laser interference. Advanced Functional Materials 24, 4595-4602 (2014). doi: 10.1002/adfm.201400296
[33] Hanczyc, P., Samoc, M. & Norden, B. Multiphoton absorption in amyloid protein fibres. Nature Photonics 7, 969-972 (2013). doi: 10.1038/nphoton.2013.282
[34] Zhang, J. et al. Strong metal-support interactions induced by an ultrafast laser. Nature Communications 12, 6665 (2021). doi: 10.1038/s41467-021-27000-5
[35] Zhang, Y. Y. et al. Bioinspired micro/nanostructured surfaces prepared by femtosecond laser direct writing for multi-functional applications. International Journal of Extreme Manufacturing 2, 032002 (2020). doi: 10.1088/2631-7990/ab95f6
[36] He, G. Z. et al. Magnetic field-assisted laser shock peening of Ti6Al4V alloy. Advanced Engineering Materials 25, 2201843 (2023). doi: 10.1002/adem.202201843
[37] Guo, H. et al. Fabrication of hybrid supercapacitor by MoCl5 precursor-assisted carbonization with ultrafast laser for improved capacitance performance. Advanced Functional Materials 33, 2213514 (2023). doi: 10.1002/adfm.202213514
[38] Guo, H. et al. Femtosecond laser bessel beam fabrication of a supercapacitor with a nanoscale electrode gap for high specific volumetric capacitance. ACS Applied Materials & Interfaces 14, 39220-39229 (2022).
[39] Yan, J. F. et al. Self-powered SnSe photodetectors fabricated by ultrafast laser. Nano Energy 97, 107188 (2022). doi: 10.1016/j.nanoen.2022.107188
[40] Deng, S. F. et al. NIR-UV dual-mode photodetector with the assistance of machine-learning fabricated by hybrid laser processing. Chemical Engineering Journal 472, 144908 (2023).
[41] Mahmoud Aghdami, K. et al. Laser nano-filament explosion for enabling open-grating sensing in optical fibre. Nature Communications 12, 6344 (2021). doi: 10.1038/s41467-021-26671-4
[42] Qiao, M., Yan, J. F. & Jiang, L. Direction controllable nano-patterning of titanium by ultrafast laser for surface coloring and optical encryption. Advanced Optical Materials 10, 2101673 (2022). doi: 10.1002/adom.202101673
[43] Qiao, M. et al. Femtosecond laser induced phase transformation of TiO2 with exposed reactive facets for improved photoelectrochemistry performance. ACS Applied Materials & Interfaces 12, 41250-41258 (2020).
[44] Yang, L. et al. Laser printed microelectronics. Nature Communications 14, 1103 (2023). doi: 10.1038/s41467-023-36722-7
[45] Zhu, D. Z. et al. Ultrafast laser plasmonic fabrication of nanocrystals by molecule modulation for photoresponse multifunctional structures. Advanced Materials 35, 2211983 (2023). doi: 10.1002/adma.202211983
[46] Xie, J. W. et al. A machine learning-combined flexible sensor for tactile detection and voice recognition. ACS Applied Materials & Interfaces 15, 12551-12559 (2023).
[47] Block, A. et al. Tracking ultrafast hot-electron diffusion in space and time by ultrafast thermomodulation microscopy. Science Advances 5, eaav8965 (2019). doi: 10.1126/sciadv.aav8965
[48] Xie, J. W. et al. Laser induced coffee-ring structure through solid-liquid transition for color printing. Small 19, 2205696 (2023). doi: 10.1002/smll.202205696
[49] Liang, Z. S. et al. Tip-enhanced ablation and ionization mass spectrometry for nanoscale chemical analysis. Science Advances 3, eaaq1059 (2017). doi: 10.1126/sciadv.aaq1059
[50] Rethfeld, B. et al. Modelling ultrafast laser ablation. Journal of Physics D:Applied Physics 50, 193001 (2017). doi: 10.1088/1361-6463/50/19/193001
[51] Johansson, A. et al. Optical forging of graphene into three-dimensional shapes. Nano Letters 17, 6469-6474 (2017). doi: 10.1021/acs.nanolett.7b03530
[52] Zhu, D. Z. et al. Three-dimensional patterning of MoS2 with ultrafast laser. Nanoscale 15, 14837-14846 (2023). doi: 10.1039/D3NR01669B
[53] Han, F. et al. Three-dimensional nanofabrication via ultrafast laser patterning and kinetically regulated material assembly. Science 378, 1325-1331 (2022). doi: 10.1126/science.abm8420
[54] Liu, S. F. et al. 3D nanoprinting of semiconductor quantum dots by photoexcitation-induced chemical bonding. Science 377, 1112-1116 (2022).
[55] Qiao, M. et al. Micro/nano processing of natural silk fibers with near-field enhanced ultrafast laser. Science China Materials 63, 1300-1309 (2020). doi: 10.1007/s40843-020-1351-3
[56] Sidhu, M. S., Kumar, B. & Singh, K. P. The processing and heterostructuring of silk with light. Nature Materials 16, 938-945 (2017). doi: 10.1038/nmat4942
[57] Sun, Y. L. et al. Aqueous multiphoton lithography with multifunctional silk-centred bio-resists. Nature Communications 6, 8612 (2015). doi: 10.1038/ncomms9612
[58] Shi, C. Y. et al. New silk road: from mesoscopic reconstruction/functionalization to flexible meso-electronics/photonics based on cocoon silk materials. Advanced Materials 33, 2005910 (2021). doi: 10.1002/adma.202005910
[59] Stiegler, J. M. et al. Nanoscale infrared absorption spectroscopy of individual nanoparticles enabled by scattering-type near-field microscopy. ACS Nano 5, 6494-6499 (2011). doi: 10.1021/nn2017638
[60] Moore, W. H. & Krimm, S. Vibrational analysis of peptides, polypeptides, and proteins. II. β-Poly (L-alanine) and β-poly (L-alanylglycine). Biopolymers 15, 2465-2483 (1976).
[61] Rousseau, M. E. et al. Study of protein conformation and orientation in silkworm and spider silk fibers using Raman microspectroscopy. Biomacromolecules 5, 2247-2257 (2004). doi: 10.1021/bm049717v
[62] Krimm, S. Vibrational analysis of conformation in peptides, polypeptides, and proteins. Biopolymers 22, 217-225 (1983). doi: 10.1002/bip.360220130
[63] Moore, W. H. & Krimm, S. Vibrational analysis of peptides, polypeptides, and proteins. I. Polyglycine I. Biopolymers 15, 2439-2464 (1976).
[64] Qiu, W. G. et al. Wet-spinning of recombinant silk-elastin-like protein polymer fibers with high tensile strength and high deformability. Biomacromolecules 10, 602-608 (2009). doi: 10.1021/bm801296r
[65] Kajihara, K. et al. Diffusion of nitrogen molecules in amorphous SiO2. Applied Physics Letters 91 (2007).
[66] Guo, H. et al. A Review of Ultrafast Laser Micro/Nano Fabrication: Material Processing, Surface/Interface Controlling and Devices Fabrication. Nano Research,https://doi.org/10.1007/s12274-024-6644-z (2024). doi: 10.1007/s12274-024-6644-z(2024
[67] He, G. Z. et al. Ultrafast laser processing of camouflaged metals by topography inherited multistep removal for information encryption. Nano Research,https://doi.org/10.1007/s12274-024-6677-3 (2024). doi: 10.1007/s12274-024-6677-3(2024