[1] Popescu, G. Quantitative Phase Imaging of Cells and Tissues. (New York: McGraw-Hill, 2011).
[2] Mir, M. et al. Quantitative phase imaging. Progress in Optics 57, 133-217 (2012).
[3] Park, Y., Depeursinge, C. & Popescu, G. Quantitative phase imaging in biomedicine. Nature Photonics 12, 578-589 (2018). doi: 10.1038/s41566-018-0253-x
[4] Cacace, T. et al. Compact off-axis holographic slide microscope: design guidelines. Biomedical Optics Express 11, 2511-2532 (2020). doi: 10.1364/BOE.11.002511
[5] Zheng, G. A. et al. Concept, implementations and applications of Fourier ptychography. Nature Reviews Physics 3, 207-223 (2021). doi: 10.1038/s42254-021-00280-y
[6] Tian, L. & Waller, L. Quantitative differential phase contrast imaging in an led array microscope. Optics Express 23, 11394-11403 (2015). doi: 10.1364/OE.23.011394
[7] Petruccelli, J. C., Tian, L. & Barbastathis, G. The transport of intensity equation for optical path length recovery using partially coherent illumination. Optics Express 21, 14430-14441 (2013). doi: 10.1364/OE.21.014430
[8] Falaggis, K., Kozacki, T. & Kujawinska, M. Optimum plane selection criteria for single-beam phase retrieval techniques based on the contrast transfer function. Optics Letters 39, 30-33 (2014). doi: 10.1364/OL.39.000030
[9] Zuo, C. et al. Transport of intensity equation: a tutorial. Optics and Lasers in Engineering 135, 106187 (2020). doi: 10.1016/j.optlaseng.2020.106187
[10] Teague, M. R. Deterministic phase retrieval: a green’s function solution. Journal of the Optical Society of America 73, 1434-1441 (1983). doi: 10.1364/JOSA.73.001434
[11] Jenkins, M. H. & Gaylord, T. K. Quantitative phase microscopy via optimized inversion of the phase optical transfer function. Applied Optics 54, 8566-8579 (2015). doi: 10.1364/AO.54.008566
[12] Barone-Nugent, E. D., Barty, A. & Nugent, K. A. Quantitative phase-amplitude microscopy I: optical microscopy. Journal of Microscopy 206, 194-203 (2002). doi: 10.1046/j.1365-2818.2002.01027.x
[13] Rodrigo, J. A. & Alieva, T. Rapid quantitative phase imaging for partially coherent light microscopy. Optics Express 22, 13472-13483 (2014). doi: 10.1364/OE.22.013472
[14] Zuo, C. et al. High-resolution transport-of-intensity quantitative phase microscopy with annular illumination. Scientific Reports 7, 7654 (2017). doi: 10.1038/s41598-017-06837-1
[15] Paganin, D. et al. Quantitative phase-amplitude microscopy. III. The effects of noise. Journal of Microscopy 214, 51-61 (2004). doi: 10.1111/j.0022-2720.2004.01295.x
[16] Lu, L. P. et al. Hybrid brightfield and darkfield transport of intensity approach for high-throughput quantitative phase microscopy. Advanced Photonics 4, 056002 (2022).
[17] Zheng, G. A. et al. Characterization of spatially varying aberrations for wide field-of-view microscopy. Optics Express 21, 15131-15143 (2013). doi: 10.1364/OE.21.015131
[18] Zheng, G. A., Horstmeyer, R. & Yang, C. Wide-field, high-resolution Fourier ptychographic microscopy. Nature Photonics 7, 739-745 (2013). doi: 10.1038/nphoton.2013.187
[19] Zuo, C., Sun, J. S. & Chen, Q. Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy. Optics Express 24, 20724-20744 (2016). doi: 10.1364/OE.24.020724
[20] Ou, X. Z., Zheng, G. A. & Yang, C. Embedded pupil function recovery for Fourier ptychographic microscopy. Optics Express 22, 4960-4972 (2014). doi: 10.1364/OE.22.004960
[21] Sun, J. S. et al. Efficient positional misalignment correction method for Fourier ptychographic microscopy. Biomedical Optics Express 7, 1336-1350 (2016). doi: 10.1364/BOE.7.001336
[22] Song, P. M. et al. Full-field Fourier ptychography (FFP): spatially varying pupil modeling and its application for rapid field-dependent aberration metrology. APL Photonics 4, 050802 (2019). doi: 10.1063/1.5090552
[23] Shu, Y. F. et al. Correction: adaptive optical quantitative phase imaging based on annular illumination Fourier ptychographic microscopy. PhotoniX 3, 27 (2022). doi: 10.1186/s43074-022-00073-1
[24] Mahajan, V. N. Zernike circle polynomials and optical aberrations of systems with circular pupils. Applied Optics 33, 8121-8124 (1994). doi: 10.1364/AO.33.008121
[25] Fan, Y. et al. Smart computational light microscopes (SCLMS) of smart computational imaging laboratory (SCILab). PhotoniX 2, 19 (2021). doi: 10.1186/s43074-021-00040-2
[26] Qian, J. M. et al. Structured illumination microscopy based on principal component analysis. eLight 3, 4 (2023). doi: 10.1186/s43593-022-00035-x
[27] Luo, W. et al. Pixel super-resolution using wavelength scanning. Light: Science & Applications 5, e16060 (2016).
[28] Zuo, C. et al. Programmable aperture microscopy: a computational method for multi-modal phase contrast and light field imaging. Optics and Lasers in Engineering 80, 24-31 (2016). doi: 10.1016/j.optlaseng.2015.12.012
[29] Waller, L., Tian, L. & Barbastathis, G. Transport of intensity phase-amplitude imaging with higher order intensity derivatives. Optics Express 18, 12552-12561 (2010). doi: 10.1364/OE.18.012552
[30] Sheppard, C. J. R. Partially coherent microscope imaging system in phase space: effect of defocus and phase reconstruction. Journal of the Optical Society of America A 35, 1846-1854 (2018). doi: 10.1364/JOSAA.35.001846
[31] Lu, L. P. et al. Accurate quantitative phase imaging by the transport of intensity equation: a mixed-transfer-function approach. Optics Letters 46, 1740-1743 (2021). doi: 10.1364/OL.422095
[32] Elser, V. Phase retrieval by iterated projections. Journal of the Optical Society of America A 20, 40-55 (2003). doi: 10.1364/JOSAA.20.000040
[33] Maiden, A. M. & Rodenburg, J. M. An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy 109, 1256-1262 (2009). doi: 10.1016/j.ultramic.2009.05.012
[34] Sun, J. S. et al. High-speed Fourier ptychographic microscopy based on programmable annular illuminations. Scientific Reports 8, 7669 (2018). doi: 10.1038/s41598-018-25797-8
[35] Dong, S. Y. et al. Spectral multiplexing and coherent-state decomposition in Fourier ptychographic imaging. Biomedical Optics Express 5, 1757-1767 (2014). doi: 10.1364/BOE.5.001757
[36] Sun, J. S. et al. Sampling criteria for Fourier ptychographic microscopy in object space and frequency space. Optics Express 24, 15765-15781 (2016). doi: 10.1364/OE.24.015765
[37] Zhou, S. et al. Transport-of-intensity Fourier ptychographic diffraction tomography: defying the matched illumination condition. Optica 9, 1362-1373 (2022). doi: 10.1364/OPTICA.476474
[38] Saba, A. et al. Physics-informed neural networks for diffraction tomography. Advanced Photonics 4, 066001 (2022).
[39] Wu, Z. L. et al. Three-dimensional nanoscale reduced-angle ptycho-tomographic imaging with deep learning (RAPID). eLight 3, 7 (2023). doi: 10.1186/s43593-022-00037-9
[40] Zhou, J. et al. Deep learning-enabled pixel-super-resolved quantitative phase microscopy from single-shot aliased intensity measurement. Laser & Photonics Reviews 18, 2300488 (2024).