[1] Wang, T. et al. Neon-concentration dependent retarding effect on the recrystallization of irradiated tungsten: experimental analysis and molecular dynamics simulation. Journal of Materials Science & Technology 139, 245-259 (2023).
[2] Zhang, Q. et al. Microstructure and properties of W-Cu composites reinforced by in-situ generated WC. International Journal of Refractory Metals and Hard Materials 99, 105585 (2021). doi: 10.1016/j.ijrmhm.2021.105585
[3] Xu, D. et al. Recent progress in research on bonding technologies of W/Cu monoblocks as the divertor for nuclear fusion reactors. Nuclear Materials and Energy 36, 101482 (2023). doi: 10.1016/j.nme.2023.101482
[4] Talignani, A. et al. A review on additive manufacturing of refractory tungsten and tungsten alloys. Additive Manufacturing 58, 103009 (2022). doi: 10.1016/j.addma.2022.103009
[5] Oh, Y. et al. Small-scale analysis of brittle-to-ductile transition behavior in pure tungsten. Journal of Materials Science & Technology 105, 242-258 (2022).
[6] Zhang, J. Y. et al. Influence of particle size on laser absorption and scanning track formation mechanisms of pure tungsten powder during selective laser melting. Engineering 5, 736-745 (2019). doi: 10.1016/j.eng.2019.07.003
[7] Kim, K. M. et al. Manufacturing & high heat flux testing of tungsten brazed mockups in KSTAR. Proceedings of the IEEE 26th Symposium on Fusion Engineering. Austin, TX, USA: IEEE, 2015.
[8] Bang, E. et al. Manufacturing and testing of flat type W/Cu/CuCrZr mock-ups by HIP process with PVD coating. Fusion Engineering and Design 146, 603-608 (2019). doi: 10.1016/j.fusengdes.2019.01.034
[9] Liu, K. Y. et al. Investigation on the interfacial microstructure and mechanical properties of the W-Cu joints fabricated by hot explosive welding. Journal of Materials Processing Technology 300, 117400 (2022). doi: 10.1016/j.jmatprotec.2021.117400
[10] Mou, N. Y. et al. Manufacturing and high heat flux testing of flat-type W/Cu/CuCrZr mock-up by HIP assisted brazing process. Fusion Engineering Design 169, 112670 (2021). doi: 10.1016/j.fusengdes.2021.112670
[11] Li, Q. et al. Manufacturing and testing of W/Cu mono-block small scale mock-up for EAST by HIP and HRP technologies. Fusion Engineering and Design 88, 1808-1812 (2013). doi: 10.1016/j.fusengdes.2013.03.076
[12] Guan, J. R. & Wang, Q. P. Laser powder bed fusion of dissimilar metal materials: a review. Materials 16, 2757 (2023). doi: 10.3390/ma16072757
[13] Tan, C. L., Zhou, K. S. & Kuang, T. C. Selective laser melting of tungsten-copper functionally graded material. Materials Letters 237, 328-331 (2019). doi: 10.1016/j.matlet.2018.11.127
[14] Wei, C. et al. Multi-material additive-manufacturing of tungsten-copper alloy bimetallic structure with a stainless-steel interlayer and associated bonding mechanisms. Additive Manufacturing 50, 102574 (2022). doi: 10.1016/j.addma.2021.102574
[15] Huang, Y. J. et al. Laser joining technology of polymer-metal hybrid structures-A review. Journal of Manufacturing Processes 79, 934-961 (2022). doi: 10.1016/j.jmapro.2022.05.026
[16] Wang, H. P. et al. Enhanced laser direct joining of continuous carbon fiber reinforced polyetheretherketone and titanium alloy with controllable mechanical interlocks. Journal of Manufacturing Processes 86, 56-65 (2023). doi: 10.1016/j.jmapro.2022.12.051
[17] Lambiase, F. et al. Repairing aluminum-PEEK hybrid metal-polymer joints made by thermo-mechanical joining. Journal of Manufacturing Processes 93, 1-14 (2023). doi: 10.1016/j.jmapro.2023.03.018
[18] Rodríguez-Vidal, E. et al. Experimental investigation into metal micro-patterning by laser on polymer-metal hybrid joining. Optics & Laser Technology 104, 73-82 (2018).
[19] Chen, W. W. et al. Effect of scanning mode on temperature field and interface morphology of laser joining between CFRTP and TC4 titanium alloy. The International Journal of Advanced Manufacturing Technology 123, 2057-2072 (2022). doi: 10.1007/s00170-022-10084-8
[20] Feng, Z. W. et al. Influence of process parameters on the joint characteristics during laser joining of aluminium alloy and CFRTP. Journal of Manufacturing Processes 64, 1493-1506 (2021). doi: 10.1016/j.jmapro.2021.03.006
[21] Talbi, A. et al. Nanoparticles based laser-induced surface structures formation on mesoporous silicon by picosecond laser beam interaction. Applied Surface Science 374, 31-35 (2016). doi: 10.1016/j.apsusc.2015.09.003
[22] Zhang, J. R. et al. Enhancing protein fluorescence detection through hierarchical biometallic surface structuring. Optics Letters 44, 339-342 (2019). doi: 10.1364/OL.44.000339
[23] Chibbaro, S. et al. Capillary filling in microchannels with wall corrugations: a comparative study of the Concus-Finn criterion by continuum, kinetic, and atomistic approaches. Langmuir 25, 12653-12660 (2009). doi: 10.1021/la901993r
[24] Wang, H. P. et al. Controllable water behaviors on V-shape micro-grooved titanium alloy surfaces depending on the depth-to-width aspect ratio. Materials Today Physics 20, 100461 (2021). doi: 10.1016/j.mtphys.2021.100461
[25] Erdogan, F. & Sih, G. C. On the crack extension in plates under plane loading and transverse shear. Journal of Basic Engineering 85, 519-525 (1963). doi: 10.1115/1.3656897
[26] Boljanović, S. & Maksimović, S. Analysis of the crack growth propagation process under mixed-mode loading. Engineering Fracture Mechanics 78, 1565-1576 (2011). doi: 10.1016/j.engfracmech.2011.02.003
[27] Cao, J. et al. Analysis of ductile-brittle competitive fracture criteria for tension process of 7050 aluminum alloy based on elastic strain energy density. Materials Science and Engineering: A 637, 201-214 (2015). doi: 10.1016/j.msea.2015.04.010
[28] Zhang, H. J. et al. Influence of laser texturing on interfacial bonding strength of W/Cu joint by spark plasma sintering. Fusion Engineering and Design 195, 113972 (2023). doi: 10.1016/j.fusengdes.2023.113972