[1] Rahaim, M. B. & Little, T. D. C. Toward practical integration of dual-use VLC within 5G networks. IEEE Wirel. Commun. 22, 97-103 (2015). doi: 10.1109/MWC.2015.7224733
[2] Elgala, H., Mesleh, R. & Haas, H. Indoor optical wireless communication: potential and state-of-the-art. IEEE Commun. Mag. 49, 56-62 (2011). doi: 10.1109/MCOM.2011.6011734
[3] Ferreira, R. X. G. et al. High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications. IEEE Photonics Technol. Lett. 28, 2023-2026 (2016). doi: 10.1109/LPT.2016.2581318
[4] Chi, Y.-C. et al. 450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM. Opt. Express 23, 13051 (2015). doi: 10.1364/OE.23.013051
[5] Wu, T. C., Chi, Y. C., Wang, H. Y., Tsai, C. T. & Lin, G. R. Blue laser diode enables underwater communication at 12.4 Gbps. Sci. Rep. 7, 40480 (2017).
[6] Chi, Y. C. et al. Phosphorous diffuser diverged blue laser diode for indoor lighting and communication. Sci. Rep. 5, 18690 (2015). doi: 10.1038/srep18690
[7] Wu, T. C. et al. Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s. Sci. Rep. 7, 11 (2017). doi: 10.1038/s41598-017-00052-8
[8] Tsai, C. T., Cheng, C. H., Kuo, H. C. & Lin, G. R. Toward high-speed visible laser lighting based optical wireless communications. Prog. Quantum Electron. 67, 100225 (2019). doi: 10.1016/j.pquantelec.2019.100225
[9] Chen, H. J., Xu, Z. Y., Gao, Q. & Li, S. B. A 51.6 Mb/s experimental VLC system using a monochromic organic LED. IEEE Photonics J. 10, 1-12 (2018).
[10] Haigh, P. A. et al. Experimental demonstration of staggered CAP modulation for low bandwidth red-emitting polymer-LED based visible light communications. In 2019 IEEE International Conference on Communications Workshops (ICC Workshops) 1-6 (Shanghai, China, IEEE, 2019).
[11] Le, S. T. et al. 10 Mb/s visible light transmission system using a polymer light-emitting diode with orthogonal frequency division multiplexing. Opt. Lett. 39, 3876 (2014). doi: 10.1364/OL.39.003876
[12] Haigh, P. A. et al. Visible light communications: real time 10 Mb/s link with a low bandwidth polymer light-emitting diode. Opt. Express 22, 2830-2838 (2014). doi: 10.1364/OE.22.002830
[13] de Souza, P. et al. High-bandwidth organic light emitting diodes for ultra-low cost visible light communication links. In 2018 20th International Conference on Transparent Optical Networks (ICTON) 1-4 (Bucharest, Romania, IEEE, 2018).
[14] Haigh, P. A. et al. Wavelength-multiplexed polymer LEDs: towards 55 Mb/s organic visible light communications. IEEE J. Sel. Areas Commun. 33, 1819-1828 (2015). doi: 10.1109/JSAC.2015.2432491
[15] Deng, W. et al. Wafer-scale precise patterning of organic single-crystal nanowire arrays via a photolithography-assisted spin-coating method. Adv. Mater. 27, 7305-7312 (2015). doi: 10.1002/adma.201503019
[16] Guo, F. et al. The fabrication of color-tunable organic light-emitting diode displays via solution processing. Light Sci. Appl. 6, e17094-e17094 (2017). doi: 10.1038/lsa.2017.94
[17] Molina-Lopez, F. et al. Inkjet-printed stretchable and low voltage synaptic transistor array. Nat. Commun. 10, 2676 (2019). doi: 10.1038/s41467-019-10569-3
[18] Biele, M. et al. Spray-coated organic photodetectors and image sensors with silicon-like performance. Adv. Mater. Technol. 4, 1800158 (2019). doi: 10.1002/admt.201800158
[19] Ghaffarzadeh, K. & Bardsley, N. OLED lighting opportunities 2017-2027: forecasts, technologies, players. https://www.idtechex.com/en/research-report/oled-lighting-opportunities-2017-2027-forecasts-technologies-players/526 (Accessed 19 April 2020).
[20] Chun, H. et al. A wide-area coverage 35 Gb/s visible light communications link for indoor wireless applications. Sci. Rep. 9, 4952 (2019). doi: 10.1038/s41598-019-41397-6
[21] Rashidi, A. et al. High-speed nonpolar InGaN/GaN LEDs for visible-light communication. IEEE Photonics Technol. Lett. 29, 381-384 (2017). doi: 10.1109/LPT.2017.2650681
[22] Shi, J. W. et al. III-nitride-based cyan lght-emitting diodes with GHz bandwidth for high-speed visible light communication. IEEE Electron Dev. Lett. 37, 894-897 (2016). doi: 10.1109/LED.2016.2615063
[23] Rajabi, K. et al. Improving modulation bandwidth of c-plane GaN-based light-emitting diodes by an ultra-thin quantum wells design. Opt. Express 26, 24985 (2018). doi: 10.1364/OE.26.024985
[24] Lan, H. Y. et al. 752-MHz modulation bandwidth of high-speed blue micro light-emitting diodes. IEEE J. Quantum Electron. 54, 3300106 (2018).
[25] Siddique, U., Tabassum, H., Hossain, E. & Kim, D. I. Wireless backhauling of 5G small cells: challenges and solution approaches. IEEE Wirel. Commun. 22, 22-31 (2015). doi: 10.1109/MWC.2015.7306534
[26] Zampetti, A., Minotto, A. & Cacialli, F. Near-Infrared (NIR) organic light-emitting diodes (OLEDs): challenges and opportunities. Adv. Funct. Mater. 29, 1807623 (2019). doi: 10.1002/adfm.201807623
[27] Englman, R. & Jortner, J. The energy gap law for radiationless transitions in large molecules. Mol. Phys. 18, 145-164 (1970). doi: 10.1080/00268977000100171
[28] Spano, F. C. & Silva, C. H- and J-aggregate behavior in polymeric semiconductors. Annu. Rev. Phys. Chem. 65, 477-500 (2014).
[29] Zhao, B. et al. High-efficiency perovskite-polymer bulk heterostructure light-emitting diodes. Nat. Photonics 12, 1-10 (2018). doi: 10.1038/s41566-018-0283-4
[30] Tuong, Ly, K. et al. Near-infrared organic light-emitting diodes with very high external quantum efficiency and radiance. Nat. Photonics 11, 63-69 (2017). doi: 10.1038/nphoton.2016.230
[31] Kim, D. H. et al. High-efficiency electroluminescence and amplified spontaneous emission from a thermally activated delayed fluorescent near-infrared emitter. Nat. Photonics 12, 98-104 (2018). doi: 10.1038/s41566-017-0087-y
[32] Minotto, A. et al. Efficient near-infrared electroluminescence at 840 nm with 'metal-free' small-molecule: polymer blends. Adv. Mater. 30, 1706584 (2018). doi: 10.1002/adma.201706584
[33] Zampetti, A. et al. Highly efficient solid-state near-infrared organic light-emitting diodes incorporating A-D-A dyes based on α, β-unsubstituted "BODIPY" moieties. Sci. Rep. 7, 1611 (2017). doi: 10.1038/s41598-017-01785-2
[34] Khan, Y. et al. A flexible organic reflectance oximeter array. Proc. Natl Acad. Sci. USA 115, E11015-E11024 (2018). doi: 10.1073/pnas.1813053115
[35] Shao, S., Khreishah, A. & Elgala, H. Pixelated VLC-backscattering for self-charging indoor IoT devices. IEEE Photonics Technol. Lett. 29, 177-180 (2016). doi: 10.1109/LPT.2016.2631946
[36] Grzybowski, M., Hugues, V., Blanchard-Desce, M. & Gryko, D. T. Two-photon-induced fluorescence in new π-expanded diketopyrrolopyrroles. Chem. Eur. J. 20, 12493-12501 (2014).
[37] Grzybowski, M. & Gryko, D. T. Diketopyrrolopyrroles: synthesis, reactivity, and optical properties. Adv. Opt. Mater. 3, 280-320 (2015). doi: 10.1002/adom.201400559
[38] Stas, S. et al. Straightforward access to diketopyrrolopyrrole (DPP) dimers. Dyes Pigments 97, 198-208 (2013).
[39] Trilling, F., Sachnik, O. & Scherf, U. π-Expanded diketopyrrolopyrroles as acceptor building blocks for the formation of novel donor-acceptor copolymers. Polym. Chem. 10, 627-632 (2019). doi: 10.1039/C8PY01435C
[40] Bronstein, H. Thieno[3, 2-b]thiophene-diketopyrrolopyrrole-containing polymers for high-performance organic field-effect transistors and organic photovoltaic devices. J. Am. Chem. Soc. 133, 3272-3275 (2011). doi: 10.1021/ja110619k
[41] van Franeker, J. J., Turbiez, M., Li, W., Wienk, M. M. & Janssen, R. A. J. A real-time study of the benefits of co-solvents in polymer solar cell processing. Nat. Commun. 6, 6229 (2015). doi: 10.1038/ncomms7229
[42] Fenwick, O. et al. Efficient red electroluminescence from diketopyrrolopyrrole copolymerised with a polyfluorene. APL Mater. 1, 032108 (2013). doi: 10.1063/1.4820433
[43] Purc, A. et al. The impact of interplay between electronic and steric effects on the synthesis and the linear and non-linear optical properties of diketopyrrolopyrrole bearing benzofuran moieties. Org. Chem. Front. 4, 724-736 (2017). doi: 10.1039/C6QO00869K
[44] Fenwick, O. et al. Linear and cyclic porphyrin hexamers as near infra-red emitters in organic light-emitting diodes. Nano Lett. 11, 2451-2456 (2011). doi: 10.1021/nl2008778
[45] Kondakov, D. Y., Pawlik, T. D., Hatwar, T. K. & Spindler, J. P. Triplet annihilation exceeding spin statistical limit in highly efficient fluorescent organic light-emitting diodes. J. Appl. Phys. 106, 124510 (2009). doi: 10.1063/1.3273407
[46] Uoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234-8 (2012). doi: 10.1038/nature11687
[47] Wallikewitz, B. H., Kabra, D., Gélinas, S. & Friend, R. H. Triplet dynamics in fluorescent polymer light-emitting diodes. Phys. Rev. B 85, 22-25 (2012). doi: 10.1103/PhysRevB.85.045209
[48] Lee, B. R. et al. Highly efficient inverted polymer light-emitting diodes using surface modifications of ZnO layer. Nat. Commun. 5, 4840 (2014). doi: 10.1038/ncomms5840
[49] Dey, A., Rao, A. & Kabra, D. A complete quantitative analysis of spatio-temporal dynamics of excitons in functional organic light-emitting diodes. Adv. Opt. Mater. 5, 1600678 (2017). doi: 10.1002/adom.201600678
[50] Scherf, U. Ladder-type materials. J. Mater. Chem. 9, 1853-1864 (1999). doi: 10.1039/a900447e
[51] Anderson, H. L. Conjugated porphyrin ladders. Inorg. Chem. 33, 972-981 (1994). doi: 10.1021/ic00083a022
[52] Rurack, K. & Spieles, M. Fluorescence quantum yields of a series of red and near-infrared dyes emitting at 600-1000 nm. Anal. Chem. 83, 1232-1242 (2011). doi: 10.1021/ac101329h
[53] de Mello, J. C., Wittmannn, H. F. & Friend, R. H. An improved experimental determination of external photoluminescence quantum efficiency. Adv. Mater. 9, 230 (1997). doi: 10.1002/adma.19970090308
[54] Brown, T. M. et al. Time dependence and freezing-in of the electrode oxygen plasma-induced work function enhancement in polymer semiconductor heterostructures. Org. Electron. 12, 623-633 (2011). doi: 10.1016/j.orgel.2011.01.015
[55] Chvojka, P. et al. On the m-CAP performance with different pulse shaping filters parameters for visible light communications. IEEE Photonics J. 9, 1-12 (2017). doi: 10.1109/JPHOT.2017.2749203