[1] |
Cho, J. et al. Shaping lightwaves in time and frequency for optical fiber communication. Nature Communications 13, 785 (2022). doi: 10.1038/s41467-022-28349-x |
[2] |
Gong, L. et al. Optical orbital-angular-momentum-multiplexed data transmission under high scattering. Light: Science & Applications 8 , 27 (2019). |
[3] |
Pi, D. P. , Liu, J. & Wang, Y. T. Review of computer-generated hologram algorithms for color dynamic holographic three-dimensional display. Light: Science & Applications 11 , 231 (2022). |
[4] |
Zhang, H., Cao, L. C. & Jin, G. F. Three-dimensional computer-generated hologram with Fourier domain segmentation. Optics Express 27, 11689-11697 (2019). doi: 10.1364/OE.27.011689 |
[5] |
Xu, X., Liu, H. L. & Wang, L. H. V. Time-reversed ultrasonically encoded optical focusing into scattering media. Nature Photonics 5, 154-157 (2011). doi: 10.1038/nphoton.2010.306 |
[6] |
Judkewitz, B. et al. Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE). Nature Photonics 7, 300-305 (2013). doi: 10.1038/nphoton.2013.31 |
[7] |
Hampson, K. M. et al. Adaptive optics for high-resolution imaging. Nature Reviews Methods Primers 1, 68 (2021). doi: 10.1038/s43586-021-00066-7 |
[8] |
Macintosh, B. et al. First light of the Gemini Planet Imager. Proceedings of the National Academy of Sciences of the United States of America 111, 12661-12666 (2014). |
[9] |
Liang, J. Y. et al. Homogeneous one-dimensional optical lattice generation using a digital micromirror device-based high-precision beam shaper. Journal of Micro/Nanolithography, MEMS, and MOEMS 11, 023002 (2012). |
[10] |
Chang, C. et al. High-brightness X-ray free-electron laser with an optical undulator by pulse shaping. Optics Express 21, 32013-32018 (2013). doi: 10.1364/OE.21.032013 |
[11] |
Park, B. et al. Reflection‐mode switchable subwavelength Bessel‐beam and Gaussian‐beam photoacoustic microscopy in vivo. Journal of Biophotonics 12, e201800215 (2019). doi: 10.1002/jbio.201800215 |
[12] |
Shi, J. H. et al. Bessel-beam Grueneisen relaxation photoacoustic microscopy with extended depth of field. Journal of Biomedical Optics 20, 116002 (2015). doi: 10.1117/1.JBO.20.11.116002 |
[13] |
Zhang, O. M. et al. Imaging the three-dimensional orientation and rotational mobility of fluorescent emitters using the Tri-spot point spread function. Applied Physics Letters 113, 031103 (2018). doi: 10.1063/1.5031759 |
[14] |
Valliappan, N. et al. Accelerating eye movement research via accurate and affordable smartphone eye tracking. Nature Communications 11, 4553 (2020). doi: 10.1038/s41467-020-18360-5 |
[15] |
Chen, P. et al. Liquid-Crystal-Mediated Geometric Phase: From Transmissive to Broadband Reflective Planar Optics. Advanced Materials 32, 1903665 (2020). doi: 10.1002/adma.201903665 |
[16] |
Wei, B. Y. et al. Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals. Advanced Materials 26, 1590-1595 (2014). doi: 10.1002/adma.201305198 |
[17] |
Lazarev, G. et al. Beyond the display: phase-only liquid crystal on Silicon devices and their applications in photonics [Invited]. Optics Express 27, 16206-16249 (2019). doi: 10.1364/OE.27.016206 |
[18] |
Yang, D. K. & Wu, S. T. Fundamentals of Liquid Crystal Devices. (Hoboken: John Wiley & Sons, Ltd. , 2006). |
[19] |
Madec, P. Y. Overview of deformable mirror technologies for adaptive optics and astronomy. Proceedings of SPIE 8447, Adaptive Optics Systems III. Amsterdam, Netherlands: SPIE, 2012, 844705. |
[20] |
Dalimier, E. & Dainty, C. Comparative analysis of deformable mirrors for ocular adaptive optics. Optics Express 13, 4275-4285 (2005). doi: 10.1364/OPEX.13.004275 |
[21] |
Stewart, J. B. et al. Design and development of a 331-segment tip–tilt–piston mirror array for space-based adaptive optics. Sensors and Actuators A: Physical 138, 230-238 (2007). doi: 10.1016/j.sna.2007.04.051 |
[22] |
Hornbeck, L. J. Digital light processing for high-brightness high-resolution applications. Proceedings of SPIE 3013, Projection Displays III. San Jose, CA, United States: SPIE, 1997, 109320S. |
[23] |
Lee, W. H. Binary synthetic holograms. Applied Optics 13, 1677-1682 (1974). doi: 10.1364/AO.13.001677 |
[24] |
Lee, W. H. Computer-generated holograms: techniques and applications. Progress in Optics 16, 119-232 (1978). |
[25] |
Goorden, S. A., Bertolotti, J. & Mosk, A. P. Superpixel-based spatial amplitude and phase modulation using a digital micromirror device. Optics Express 22, 17999-8009 (2014). doi: 10.1364/OE.22.017999 |
[26] |
Gutiérrez-Cuevas, R. & Popoff, S. M. Binary amplitude holograms for shaping complex light fields with digital micromirror devices. Journal of Physics: Photonics 6, 045022 (2024). doi: 10.1088/2515-7647/ad8617 |
[27] |
Bartlett, T. A. , McDonald, B. C. & Hall, J. Adapting Texas instruments DLP technology to demonstrate a phase spatial light modulator. Proceedings of SPIE 10932, Emerging Digital Micromirror Device Based Systems and Applications XI. San Francisco, CA, United States: SPIE, 2019, 109320S. |
[28] |
Oden, P. I. et al. Innovations with a massively paralleled, microelectromechanical systems (MEMS) toward piston-mode-based phase light modulator (PLM). Proceedings of SPIE 11294, Emerging Digital Micromirror Device Based Systems and Applications XII. San Francisco, CA, United States: SPIE, 2020, 112940G. |
[29] |
Bartlett, T. A. et al. Recent advances in the development of the Texas Instruments phase-only microelectromechanical systems (MEMS) spatial light modulator. Proceedings of SPIE 11698, Emerging Digital Micromirror Device Based Systems and Applications XIII. SPIE, 2021, 116980O. |
[30] |
Blanche, P. A. & Ketchum, R. S. Texas Instruments phase light modulator for holography. Proceedings of the OSA Imaging and Applied Optics Congress 2021, Digital Holography and Three-Dimensional Imaging. Washington, DC, United States: Optica Publishing Group, 2021, DW4B. 3. |
[31] |
Ketchum, R. S. & Blanche, P. -A. Diffraction efficiency characteristics for MEMS-based phase-only spatial light modulator with nonlinear phase distribution. Photonics 8 , 62 (2021). |
[32] |
Khonina, S. N. et al. Bessel beam: significance and applications-a progressive review. Micromachines 11, 997 (2020). doi: 10.3390/mi11110997 |
[33] |
Kennedy, S. A. et al. Creation of Laguerre-Gaussian laser modes using diffractive optics. Physical Review A 66, 043801 (2002). doi: 10.1103/PhysRevA.66.043801 |
[34] |
Suchand Sandeep, C. S. et al. Bessel beams in ophthalmology: a review. Micromachines 14, 1672 (2023). doi: 10.3390/mi14091672 |
[35] |
Grillo, V. et al. Generation and application of Bessel beams in electron microscopy. Ultramicroscopy 166, 48-60 (2016). doi: 10.1016/j.ultramic.2016.03.009 |
[36] |
Vicidomini, G. , Bianchini, P. & Diaspro, A. STED super-resolved microscopy. Nature Methods 15 , 173-182 (2018). |
[37] |
Bustamante, C. J. et al. Optical tweezers in single-molecule biophysics. Nature Reviews Methods Primers 1, 25 (2021). doi: 10.1038/s43586-021-00021-6 |
[38] |
Paterson, L. et al. Controlled rotation of optically trapped microscopic particles. Science 292, 912-914 (2001). doi: 10.1126/science.1058591 |
[39] |
Kovalev, A. A., Kotlyar, V. V. & Porfirev, A. P. Optical trapping and moving of microparticles by using asymmetrical Laguerre–Gaussian beams. Optics Letters 41, 2426-2429 (2016). doi: 10.1364/OL.41.002426 |
[40] |
Jiao, S. et al. Complex-amplitude holographic projection with a digital micromirror device (DMD) and error diffusion algorithm. IEEE Journal of Selected Topics in Quantum Electronics 26, 2800108 (2020). |
[41] |
Yu, S. T. et al. Direct binary search method for high-resolution holographic image projection. Optics Express 30, 26856 (2022). doi: 10.1364/OE.462954 |