[1] Singer, W., Totzeck, M. & Gross, H. Handbook of optical systems, volume 2: Physical image formation (John Wiley & Sons, Weinheim, 2006).
[2] Wang, Z. B., et al. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nature Communications 2, 218 (2011). doi: 10.1038/ncomms1211
[3] Darafsheh, A. Optical super-resolution and periodical focusing effects by dielectric microspheres. PhD thesis, The University of North Carolina at Charlotte, Charlotte (2013).
[4] Mansfield, S. M. & Kino, G. S. Solid immersion microscope. Applied Physics Letters 57, 2615-2616 (1990). doi: 10.1063/1.103828
[5] Hao, X., et al. Microsphere based microscope with optical super-resolution capability. Applied Physics Letters 99, 203102 (2011). doi: 10.1063/1.3662010
[6] Darafsheh, A., et al. Optical super-resolution by high-index liquid-immersed microspheres. Applied Physics Letters 101, 141128 (2012). doi: 10.1063/1.4757600
[7] Li, L., et al. Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy. Light: Science & Applications 2, e104 (2013).
[8] Monks, J. N., et al. Spider silk: mother nature’s bio-superlens. Nano Letters 16, 5842-5845 (2016). doi: 10.1021/acs.nanolett.6b02641
[9] Darafsheh, A. Microsphere-assisted microscopy. Journal of Applied Physics 131, 031102 (2022). doi: 10.1063/5.0068263
[10] Kassamakov, I., et al. 3D super-resolution optical profiling using microsphere enhanced Mirau interferometry. Scientific Reports 7, 3683 (2017). doi: 10.1038/s41598-017-03830-6
[11] Montgomery, P. C., et al. High resolution surface metrology using microsphere-assisted interference microscopy. Physica Status Solidi (a) 216, 1800761 (2019). doi: 10.1002/pssa.201800761
[12] Hüser, L. & Lehmann, P. Microsphere-assisted interferometry with high numerical apertures for 3D topography measurements. Applied Optics 59, 1695-1702 (2020). doi: 10.1364/AO.379222
[13] Huszka, G. & Gijs, M. A. M. Super-resolution optical imaging: A comparison. Micro and Nano Engineering 2, 7-28 (2019). doi: 10.1016/j.mne.2018.11.005
[14] Chen, Z. G., Taflove, A. & Backman, V. Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique. Optics Express 12, 1214-1220 (2004). doi: 10.1364/OPEX.12.001214
[15] Duan, Y. B., Barbastathis, G. & Zhang, B. L. Classical imaging theory of a microlens with super-resolution. Optics Letters 38, 2988-2990 (2013). doi: 10.1364/OL.38.002988
[16] Sundaram, V. M. & Wen, S. B. Analysis of deep sub-micron resolution in microsphere based imaging. Applied Physics Letters 105, 204102 (2014). doi: 10.1063/1.4902247
[17] Ben-Aryeh, Y. Increase of resolution by use of microspheres related to complex Snell’s law. Journal of the Optical Society of America A 33, 2284-2288 (2016). doi: 10.1364/JOSAA.33.002284
[18] Perrin, S., et al. Microsphere-assisted phase-shifting profilometry. Applied Optics 56, 7249-7255 (2017). doi: 10.1364/AO.56.007249
[19] Zhou, S., et al. Effects of whispering gallery mode in microsphere super-resolution imaging. Applied Physics B 123, 236 (2017).
[20] Lin, C. B., Huang, Z. H. & Liu, C. Y. Formation of high-quality photonic nanojets by decorating spider silk. Optics Letters 44, 667-670 (2019). doi: 10.1364/OL.44.000667
[21] Lecler, S., et al. Photonic jet lens. Scientific Reports 9, 4725 (2019). doi: 10.1038/s41598-019-41193-2
[22] Perrin, S., et al. Compensated microsphere-assisted interference microscopy. Physical Review Applied 13, 014068 (2020). doi: 10.1103/PhysRevApplied.13.014068
[23] Yang, S. L., et al. Converting evanescent waves into propagating waves: The super-resolution mechanism in microsphere-assisted microscopy. The Journal of Physical Chemistry C 124, 25951-25956 (2020). doi: 10.1021/acs.jpcc.0c07067
[24] Hüser, L. & Lehmann, P. Microsphere-assisted interference microscopy for resolution enhancement. tm-Technisches Messen 88, 311-318 (2021). doi: 10.1515/teme-2020-0101
[25] Lin, C. B., et al. Photonic nanojet modulation achieved by a spider-silk-based metal–dielectric dome microlens. Photonics 8, 334 (2021). doi: 10.3390/photonics8080334
[26] Minin, O. V. & Minin, I. V. Optical phenomena in mesoscale dielectric particles. Photonics 8, 591 (2021). doi: 10.3390/photonics8120591
[27] Darafsheh, A., et al. Optical super-resolution imaging by high-index microspheres embedded in elastomers. Optics Letters 40, 5-8 (2015). doi: 10.1364/OL.40.000005
[28] Yang, H., et al. Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope. Small 10, 1712-1718 (2014). doi: 10.1002/smll.201302942
[29] Aakhte, M., et al. Microsphere-assisted super-resolved mirau digital holographic microscopy for cell identification. Applied Optics 56, D8-D13 (2017). doi: 10.1364/AO.56.0000D8
[30] Hoang, T. H., et al. Focusing and imaging in microsphere-based microscopy. Optics Express 23, 12337-12353 (2015). doi: 10.1364/OE.23.012337
[31] Chen, R., et al. Complete modeling of subsurface microscopy system based on aplanatic solid immersion lens. Journal of the Optical Society of America A 29, 2350-2359 (2012). doi: 10.1364/JOSAA.29.002350
[32] Maslov, A. V. & Astratov, V. N. Imaging of sub-wavelength structures radiating coherently near microspheres. Applied Physics Letters 108, 051104 (2016). doi: 10.1063/1.4941030
[33] Maslov, A. V. & Astratov, V. N. Optical nanoscopy with contact mie-particles: Resolution analysis. Applied Physics Letters 110, 261107 (2017). doi: 10.1063/1.4989687
[34] Maslov, A. V. & Astratov, V. N. Resolution and reciprocity in microspherical nanoscopy: Point-spread function versus photonic nanojets. Physical Review Applied 11, 064004 (2019). doi: 10.1103/PhysRevApplied.11.064004
[35] Astratov, V. N. et al. Ball lens-assisted smartphone microscopy with diffraction-limited resolution. Proceedings of SPIE 12152, Mesophotonics: Physics and Systems at Mesoscale. Strasbourg, France: SPIE, 2022.
[36] Wang, Z. B. & Luk’yanchuk, B. Super-resolution imaging and microscopy by dielectric particle-lenses. In Label-Free Super-Resolution Microscopy (ed Astratov, V. N.) 371–406 (Springer, Cham, 2019).
[37] Yang, H., et al. Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet. Nano Letters 16, 4862-4870 (2016). doi: 10.1021/acs.nanolett.6b01255
[38] Astratov, V. N. et al. Fundamental limits of super-resolution microscopy by dielectric microspheres and microfibers. In Nanoscale Imaging, Sensing and Actuation for Biomedical Applications XⅢ, 97210K (SPIE, San Francisco, Carlifornia, 2016).
[39] Boudoukha, R., et al. Near-to far-field coupling of evanescent waves by glass microspheres. Photonics 8, 73 (2021). doi: 10.3390/photonics8030073
[40] Pahl, T., et al. Two-dimensional modeling of systematic surface height deviations in optical interference microscopy based on rigorous near field calculation. Journal of Modern Optics 67, 963-973 (2020). doi: 10.1080/09500340.2020.1801871
[41] Pahl, T., et al. 3D modeling of coherence scanning interferometry on 2D surfaces using FEM. Optics Express 28, 39807-39826 (2020). doi: 10.1364/OE.411167
[42] Pahl, T., et al. Rigorous 3D modeling of confocal microscopy on 2D surface topographies. Measurement Science and Technology 32, 094010 (2021). doi: 10.1088/1361-6501/abfd69
[43] Hüser, L. et al. The use of microsphere assistance in interference microscopy with high numerical aperture objective lenses. Proceedings of SPIE 12152, Mesophotonics: Physics and Systems at Mesoscale. Strasbourg, France: SPIE, 2022.
[44] Darafsheh, A. Comment on ‘super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis’[ann. phys.(berlin) 527, 513 (2015)]. Annalen der Physik 528, 898-900 (2016). doi: 10.1002/andp.201500359
[45] Lecler, S., Perrin, S. & Montgomery, P. C. Physics of 3D microsphere assisted microscopy. Proceedings of the 21st International Conference on Transparent Optical Networks (ICTON), Angers, France, 2019.
[46] Sheppard, C. J. R. Resolution and super-resolution. Microscopy Research & Technique 80, 590-598 (2017).
[47] de Groot, P. J. The instrument transfer function for optical measurements of surface topography. Journal of Physics: Photonics 3, 024004 (2021). doi: 10.1088/2515-7647/abe3da
[48] Su, R., et al. Scattering and three-dimensional imaging in surface topography measuring interference microscopy. Journal of the Optical Society of America A 38, A27-A42 (2021).
[49] Lehmann, P., Hagemeier, S. & Pahl, T. Three-dimensional transfer functions of interference microscopes. Metrology 1, 122-141 (2021). doi: 10.3390/metrology1020009
[50] Lehmann, P. & Pahl, T. Three-dimensional transfer function of optical microscopes in reflection mode. Journal of Microscopy 284, 45-55 (2021). doi: 10.1111/jmi.13040
[51] Lehmann, P., Künne, M. & Pahl, T. Analysis of interference microscopy in the spatial frequency domain. Journal of Physics: Photonics 3, 014006 (2021). doi: 10.1088/2515-7647/abda15
[52] Beckmann, P. & Spizzichino, A. The scattering of electromagnetic waves from rough surfaces (Artech House, Inc., Norwood, 1987).
[53] Thorsos, E. I. The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum. The Journal of the Acoustical Society of America 83, 78-92 (1988). doi: 10.1121/1.396188
[54] Montgomery, P. C., et al. 3D nano surface profilometry by combining the photonic nanojet with interferometry. Journal of Physics: Conference Series 794, 012006 (2017). doi: 10.1088/1742-6596/794/1/012006
[55] Zang, J. J., et al. Microsphere-assisted imaging of periodic and non-periodic structures. IEEE Photonics Technology Letters 34, 341-344 (2022). doi: 10.1109/LPT.2022.3155742
[56] Allen, K. W., et al. Super-resolution microscopy by movable thin-films with embedded microspheres: resolution analysis. Annalen der Physik 527, 513-522 (2015). doi: 10.1002/andp.201500194
[57] Allen, K. W., L i, Y. C. & Astratov, V. N. Reply to “comment on ‘super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis’[ann. phys.(berlin) 527, 513 (2015)]”. Annalen der Physik 528, 901-904 (2016). doi: 10.1002/andp.201600211
[58] Refractiveindex.info. (2022). at https://refractiveindex.info/ URL.
[59] Bao, G., Chen, Z. M. & Wu, H. J. Adaptive finite-element method for diffraction gratings. Journal of the Optical Society of America A 22, 1106-1114 (2005). doi: 10.1364/JOSAA.22.001106
[60] Zhou, W. Q. & Wu, H. J. An adaptive finite element method for the diffraction grating problem with PML and few-mode DtN truncations. Journal of Scientific Computing 76, 1813-1838 (2018). doi: 10.1007/s10915-018-0683-0
[61] Logg, A., Mardal, K. A. & Wells, G. N. Automated solution of differential equations by the finite element method: The FEniCS book (Springer Science & Business Media, Berlin, 2012).
[62] NGSolve. (2020). at https://ngsolve.org/ URL.
[63] Jin, J. M. The finite element method in electromagnetics (John Wiley & Sons, New York, 2014), 3rd edn.
[64] Allen, K. W. et al. Super-resolution imaging by arrays of high-index spheres embedded in transparent matrices. NAECON 2014- IEEE National Aerospace and Electronics Conference. Dayton, OH, USA: IEEE, 2014, 50-52.
[65] Hao, X., et al. Far-field super-resolution imaging using near-field illumination by micro-fiber. Applied Physics Letters 102, 013104 (2013). doi: 10.1063/1.4773572
[66] Allen, K. W., et al. Overcoming the diffraction limit of imaging nanoplasmonic arrays by microspheres and microfibers. Optics Express 23, 24484-24496 (2015). doi: 10.1364/OE.23.024484
[67] Darafsheh, A. et al. Super-resolution optical microscopy by using dielectric microwires. Proceedings of SPIE 9713, Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XXⅢ. San Francisco, California, United States: SPIE, 2016, 135-139.
[68] Darafsheh, A. & Bollinger, D. Systematic study of the characteristics of the photonic nanojets formed by dielectric microcylinders. Optics Communications 402, 270-275 (2017). doi: 10.1016/j.optcom.2017.06.004
[69] Darafsheh, A. Influence of the background medium on imaging performance of microsphere-assisted super-resolution microscopy. Optics Letters 42, 735-738 (2017). doi: 10.1364/OL.42.000735
[70] Dhama, R., et al. Super-resolution imaging by dielectric superlenses: TiO2 metamaterial superlens versus BaTiO3 superlens. Photonics 8, 222 (2021). doi: 10.3390/photonics8060222
[71] Pei, Y., et al. Optoplasmonic-enhanced imaging of monolayer polystyrene nanoparticle arrays by barium titanate glass microsphere-assisted microscopy: Implications for nanoparticle characterization. ACS Applied Nano Materials 4, 11281-11287 (2021). doi: 10.1021/acsanm.1c02879
[72] Davis, E. J. & Schweiger, G. The airborne microparticle: its physics, chemistry, optics, and transport phenomena (Springer Science & Business Media, Heidelberg, 2002).
[73] Foreman, M. R., Swaim, J. D. & Vollmer, F. Whispering gallery mode sensors. Advances in Optics and Photonics 7, 168-240 (2015). doi: 10.1364/AOP.7.000168
[74] Darafsheh, A. Photonic nanojets and their applications. Journal of Physics: Photonics 3, 022001 (2021). doi: 10.1088/2515-7647/abdb05
[75] Abdulhalim, I. Spatial and temporal coherence effects in interference microscopy and full-field optical coherence tomography. Annalen der Physik 524, 787-804 (2012). doi: 10.1002/andp.201200106
[76] Hüser, L. & Lehmann, P. Analysis of resolution enhancement through microsphere-assisted interferometry in the 3D spatial frequency domain. Proceedings of SPIE 11782, Optical Measurement Systems for Industrial Inspection XⅡ. SPIE, 2021.
[77] Chim, S. S. C. & Kino, G. S. Phase measurements using the Mirau correlation microscope. Applied Optics 30, 2197-2201 (1991). doi: 10.1364/AO.30.002197
[78] Fleischer, M., Windecker, R. & Tiziani, H. J. Fast algorithms for data reduction in modern optical three-dimensional profile measurement systems with MMX technology. Applied Optics 39, 1290-1297 (2000). doi: 10.1364/AO.39.001290
[79] Darafsheh, A., et al. Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies. Applied Physics Letters 104, 061117 (2014). doi: 10.1063/1.4864760
[80] Du, B. T., et al. Super-resolution imaging with direct laser writing-printed microstructures. The Journal of Physical Chemistry A 124, 7211-7216 (2020). doi: 10.1021/acs.jpca.0c05415