[1] |
Maddison, F. Early astronomical and mathematical instruments: a brief survey of sources and modern studies. Hist. Sci. 2, 17–50 (1963). doi: 10.1177/007327536300200102 |
[2] |
Turner, G. L. The history of optical instruments: a brief survey of sources and modern studies. Hist. Sci. 8, 53–93 (1969). doi: 10.1177/007327536900800103 |
[3] |
Johnson, R. B. A historical perspective on understanding optical aberrations. Proc. SPIE 10263, (1992). |
[4] |
Fang, F. Z. et al. Manufacturing and measurement of freeform optics. CIRP Ann. 62, 823–846 (2013). doi: 10.1016/j.cirp.2013.05.003 |
[5] |
Gissibl, T. et al. Two-photon direct laser writing of ultracompact multi-lens objectives. Nat. Photonics 10, 554–560 (2016). doi: 10.1038/nphoton.2016.121 |
[6] |
Gissibl, T. et al. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres. Nat. Commun. 7, 11763 (2016). doi: 10.1038/ncomms11763 |
[7] |
Hong, Z. H. & Liang, R. G. IR-laser assisted additive freeform optics manufacturing. Sci. Rep. 7, 7145 (2017). doi: 10.1038/s41598-017-07446-8 |
[8] |
Thompson, K. P. & Rolland, J. P. Freeform optical surfaces: a revolution in imaging optical design. Opt. Photonics N. 23, 30–35 (2012). http://www.opticsinfobase.org/abstract.cfm?uri=opn-23-6-30 |
[9] |
Reimers, J. et al. Freeform spectrometer enabling increased compactness. Light. : Sci. Appl. 6, e17026 (2017). http://www.zhangqiaokeyan.com/academic-journal-cn_light-science-applications-english_thesis/0201232263621.html |
[10] |
Jahn, W., Ferrari, M. & Hugot, E. Innovative focal plane design for large space telescope using freeform mirrors. Optica 4, 1188–1195 (2017). doi: 10.1364/OPTICA.4.001188 |
[11] |
West, G. J. & Howard, J. M. Application for freeform optics at NASA. https://ntrs.nasa.gov/search.jsp?R=20170010419 (2017). |
[12] |
Zou, Y. C. et al. Miniature adjustable-focus endoscope with a solid electrically tunable lens. Opt. Express 23, 20582–20592 (2015). doi: 10.1364/OE.23.020582 |
[13] |
Li, J. W. et al. Two-photon polymerisation 3D printed freeform micro-optics for optical coherence tomography fibre probes. Sci. Rep. 8, 14789 (2018). doi: 10.1038/s41598-018-32407-0 |
[14] |
Kress, B. C. Optical Architectures for Augmented-, Virtual-, and Mixed-Reality Headsets (SPIE Press, 2020). |
[15] |
Wagner, C. & Harned, N. EUV lithography: lithography gets extreme. Nat. Photonics 4, 24–26 (2010). doi: 10.1038/nphoton.2009.251 |
[16] |
Williamson, D. M. Freeforms in EUV lithography projection optics. In Proceedings of Freeform Optics 2015 FM3B. 4 (Optical Society of America, 2015) https://www.osapublishing.org/abstract.cfm?uri=freeform-2015-FM3B.4. |
[17] |
Wills, S. Freeform optics: notes from the revolution. Opt. Photonics N. 28, 34–41 (2017). http://smartsearch.nstl.gov.cn/paper_detail.html?id=e08b88f00d2a111220c4f9cbb0733c4e |
[18] |
The Scott Partnership. Optical simulation software. Nat. Photonics 4, 256–257 (2010). doi: 10.1038/nphoton.2010.73 |
[19] |
Sahin, F. E. Open-source optimization algorithms for optical design. Optik 178, 1016–1022 (2019). doi: 10.1016/j.ijleo.2018.10.073 |
[20] |
Feder, D. P. Automatic optical design. Appl. Opt. 2, 1209–1226 (1963). doi: 10.1364/AO.2.001209 |
[21] |
van Turnhout, M. & Bociort, F. Instabilities and fractal basins of attraction in optical system optimization. Opt. Express 17, 314–328 (2009). doi: 10.1364/OE.17.000314 |
[22] |
Shannon, R. R. The Art and Science of Optical Design (Cambridge University Press, 1997). |
[23] |
Gimenez-Benitez, P. et al. Simultaneous multiple surface optical design method in three dimensions. Optical Eng. 43, 1489–1502 (2004). doi: 10.1117/1.1752918 |
[24] |
Liu, J. Y., Benítez, P. & Miñano, J. C. Single freeform surface imaging design with unconstrained object to image mapping. Opt. Express 22, 30538–30546 (2014). doi: 10.1364/OE.22.030538 |
[25] |
Duerr, F. et al. Analytic free-form lens design in 3D: coupling three ray sets using two lens surfaces. Opt. Express 20, 10839–10846 (2012). doi: 10.1364/OE.20.010839 |
[26] |
Duerr, F. et al. Analytic design method for optimal imaging: coupling three ray sets using two free-form lens profiles. Opt. Express 20, 5576–5585 (2012). doi: 10.1364/OE.20.005576 |
[27] |
Hicks, R. A. Controlling a ray bundle with a free-form reflector. Opt. Lett. 33, 1672–1674 (2008). doi: 10.1364/OL.33.001672 |
[28] |
Yang, T. et al. Design method of freeform off-axis reflective imaging systems with a direct construction process. Opt. Express 22, 9193–9205 (2014). doi: 10.1364/OE.22.009193 |
[29] |
Volatier, J. B. & Druart, G. Differential method for freeform optics applied to two-mirror off-axis telescope design. Opt. Lett. 44, 1174–1177 (2019). doi: 10.1364/OL.44.001174 |
[30] |
Volatier, J. B., Duveau, L. & Druart, G. An exploration of the freeform two-mirror off-axis solution space. J. Phys. : Photonics 2, 014004 (2020). doi: 10.1088/2515-7647/ab5c0d |
[31] |
Croke, C. B. & Hicks, R. A. Solution to the bundle-to-bundle mapping problem of geometric optics using four freeform reflectors. J. Optical Soc. Am. A 31, 2097–2104 (2014). doi: 10.1364/JOSAA.31.002097 |
[32] |
Yang, T., Jin, G. F. & Zhu, J. Automated design of freeform imaging systems. Light. : Sci. Appl. 6, e17081 (2017). http://www.zhangqiaokeyan.com/academic-journal-cn_light-science-applications-english_thesis/0201232264124.html |
[33] |
Xu, C. et al. Automatic optical path configuration variation in off-axis mirror system design. Opt. Express 27, 15251–15261 (2019). doi: 10.1364/OE.27.015251 |
[34] |
Carneiro de Albuquerque, B. F., Luis de Sousa, F. & Montes, A. S. Multi-objective approach for the automatic design of optical systems. Opt. Express 24, 6619–6643 (2016). doi: 10.1364/OE.24.006619 |
[35] |
Wu, R. M., Sasián, J. & Liang, R. G. Algorithm for designing free-form imaging optics with nonrational B-spline surfaces. Appl. Opt. 56, 2517–2522 (2017). doi: 10.1364/AO.56.002517 |
[36] |
Chrisp, M. P., Primeau, B. & Echter, M. A. Imaging freeform optical systems designed with NURBS surfaces. Optical Eng. 55, 071208 (2016). doi: 10.1117/1.OE.55.7.071208 |
[37] |
Houllier, T. & Lépine, T. Comparing optimization algorithms for conventional and freeform optical design. Opt. Express 27, 18940–18957 (2019). doi: 10.1364/OE.27.018940 |
[38] |
Korsch, D. Reflective Optics 207–259 (Academic Press, 1991). |
[39] |
Rakich, A. & Rumsey, N. Method for deriving the complete solution set for three-mirror anastigmatic telescopes with two spherical mirrors. J. Optical Soc. Am. A 19, 1398–1405 (2002). doi: 10.1364/JOSAA.19.001398 |
[40] |
Nie, Y. F. et al. Freeform optical design for a nonscanning corneal imaging system with a convexly curved image. Appl. Opt. 56, 5630–5638 (2017). doi: 10.1364/AO.56.005630 |
[41] |
González-Acuña, R. G., Chaparro-Romo, H. A. & Gutiérrez-Vega, J. C. Analytic solution of the Eikonal for a stigmatic singlet lens. Phys. Scr. 95, 085201 (2020). doi: 10.1088/1402-4896/ab99fa |
[42] |
Howard, J. M. & Stone, B. D. Imaging with three spherical mirrors. Appl. Opt. 39, 3216–3231 (2000). doi: 10.1364/AO.39.003216 |
[43] |
Howard, J. M. & Stone, B. D. Imaging with four spherical mirrors. Appl. Opt. 39, 3232–3242 (2000). doi: 10.1364/AO.39.003232 |
[44] |
Thompson, K. Description of the third-order optical aberrations of near-circular pupil optical systems without symmetry. J. Optical Soc. Am. A 22, 1389–1401 (2005). doi: 10.1364/JOSAA.22.001389 |
[45] |
Thompson, K. P. Multinodal fifth-order optical aberrations of optical systems without rotational symmetry: spherical aberration. J. Optical Soc. Am. A 26, 1090–1100 (2009). doi: 10.1364/JOSAA.26.001090 |
[46] |
Thompson, K. P. Multinodal fifth-order optical aberrations of optical systems without rotational symmetry: the comatic aberrations. J. Optical Soc. Am. A 27, 1490–1504 (2010). doi: 10.1364/JOSAA.27.001490 |
[47] |
Fuerschbach, K., Rolland, J. P. & Thompson, K. P. Extending Nodal Aberration Theory to include mount-induced aberrations with application to freeform surfaces. Opt. Express 20, 20139–20155 (2012). doi: 10.1364/OE.20.020139 |
[48] |
Yang, T., Zhu, J. & Jin, G. F. Nodal aberration properties of coaxial imaging systems using Zernike polynomial surfaces. J. Optical Soc. Am. A 32, 822–836 (2015). doi: 10.1364/JOSAA.32.000822 |
[49] |
Shi, H. D. et al. Analysis of nodal aberration properties in off-axis freeform system design. Appl. Opt. 55, 6782–6790 (2016). doi: 10.1364/AO.55.006782 |
[50] |
Bauer, A., Schiesser, E. M. & Rolland, J. P. Starting geometry creation and design method for freeform optics. Nat. Commun. 9, 1756 (2018). doi: 10.1038/s41467-018-04186-9 |
[51] |
Zhong, Y. & Gross, H. Initial system design method for non-rotationally symmetric systems based on Gaussian brackets and Nodal aberration theory. Opt. Express 25, 10016–10030 (2017). doi: 10.1364/OE.25.010016 |
[52] |
Duerr, F. & Thienpont, H. Optical design methods for imaging systems and optical systems designed therewith. Patent No. WO/2019/129872 (2019). |
[53] |
Barakat, R. & Houston, A. The aberrations of non-rotationally symmetric systems and their diffraction effects. Opt. Acta. : Int. J. Opt. 13, 1–30 (1966). doi: 10.1080/713817966 |
[54] |
Gross, H. et al. Handbook of Optical Systems: Volume 3: Aberration Theory and Correction of Optical Systems (Wiley-VCH, 2007). |
[55] |
Said-Houari, B. in Differential Equations: Methods and Applications (ed Said-Houari, B. ) 125–140 (Springer, 2015). |
[56] |
Lawson, C. L. & Hanson, R. J. Solving Least Squares Problems (Society for Industrial and Applied Mathematics, 1995), https://doi.org/10.1137/1.9781611971217. |
[57] |
Kiontke, S. R. Monolithic freeform element. Proc. SPIE 9575, 95750G (2015). |
[58] |
Fuchs, U. & Kiontke, S. R. Proc. SPIE 9948, 99480L (2016). |
[59] |
Reshidko, D. & Sasián, J. Method for the design of nonaxially symmetric optical systems using free-form surfaces. Opt. Eng. 57, 101704 (2018). http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204112550223.html |