[1] Baldacchini, T. Three-Dimensional Microfabrication Using Two-Photon Polymerization: Fundamentals, Technology, and Applications. (William Andrew, 2015).
[2] Matsuo, S., Juodkazis, S. & Misawa, H. Femtosecond laser microfabrication of periodic structures using a microlens array. Applied Physics A 80, 683-685 (2005). doi: 10.1007/s00339-004-3108-x
[3] Sun, Z. B. et al. Multicolor polymer nanocomposites: in situ synthesis and fabrication of 3D microstructures. Advanced Materials 20, 914-919 (2008).
[4] Truby, R. L. & Lewis, J. A. Printing soft matter in three dimensions. Nature 540, 371-378 (2016). doi: 10.1038/nature21003
[5] Wu, E. S. et al. Two-photon lithography for microelectronic application. Proceedings of SPIE 1674, Optical/Laser Microlithography V. San Jose, CA, USA: SPIE, 1992, 776-782.
[6] Malinauskas, M., Danilevičius, P. & Juodkazis, S. Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses. Optics Express 19, 5602-5610 (2011). doi: 10.1364/OE.19.005602
[7] Maruo, S., Nakamura, O. & Kawata, S. Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Optics Letters 22, 132-134 (1997). doi: 10.1364/OL.22.000132
[8] Farsari, M. & Chichkov, B. N. Two-photon fabrication. Nature Photonics 3, 450-452 (2009). doi: 10.1038/nphoton.2009.131
[9] Hahn, V. et al. 3-D laser nanoprinting. Optics and Photonics News 30, 28-35 (2019).
[10] Hahn, V. et al. Two-step absorption instead of two-photon absorption in 3D nanoprinting. Nature Photonics 15, 932-938 (2021).
[11] Maruo, S. & Ikuta, K. Three-dimensional microfabrication by use of single-photon-absorbed polymerization. Applied Physics Letters 76, 2656-2658 (2000). doi: 10.1063/1.126742
[12] Mueller, J. B. et al. Polymerization kinetics in three-dimensional direct laser writing. Advanced Materials 26, 6566-6571 (2014).
[13] Mueller, P. , Thiel, M. & Wegener, M. 3D direct laser writing using a 405 nm diode laser. Optics Letters 39, 6847-6850 (2014).
[14] Hahn, V. et al. Light-sheet 3D microprinting via two-colour two-step absorption. Nature Photonics 16, 784-791 (2022).
[15] Hahn, V. et al. Challenges and opportunities in 3D laser printing based on (1 + 1)-photon absorption. ACS Photonics 10, 1, 24-33 (2023).
[16] Rothenbach, C. A. & Gupta, M. C. High resolution, low cost laser lithography using a Blu-ray optical head assembly. Optics and Lasers in Engineering 50, 900-904 (2012). doi: 10.1016/j.optlaseng.2011.12.004
[17] Chang, T. J. et al. Micro and nanoscale 3D printing using optical pickup unit from a gaming console. Communications Physics 4, 23 (2021).
[18] Liu, X. et al. High-resolution 3D nanoprinting based on two-step absorption via an integrated fiber-coupled laser diode. Optics Letters 48, 4300-4303 (2023).
[19] Wang, H. et al. Two-photon polymerization lithography for optics and photonics: fundamentals, materials, technologies, and applications. Advanced Functional Materials 33, 2214211 (2023).
[20] Mirrorcle technologies Inc. (2023). at https://www.mirrorcletech.com/wp/products/mems-mirrors/ URL.
[21] Frenzel, T., Kadic, M. & Wegener, M. Three-dimensional mechanical metamaterials with a twist. Science 358, 1072-1074 (2017). doi: 10.1126/science.aao4640
[22] #3DBenchy. athttps://www.3dbenchy.com/ URL.
[23] Fischer, J. & Wegener, M. Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy [invited]. Optical Materials Express 1, 614-624 (2011). doi: 10.1364/OME.1.000614
[24] Arnoux, C. et al. Polymerization photoinitiators with near-resonance enhanced two-photon absorption cross-section: toward high-resolution photoresist with improved sensitivity. Macromolecules 53, 9264-9278 (2020).
[25] Malinauskas, M. et al. Ultrafast laser processing of materials: from science to industry. Light: Science & Applications 5, e16133 (2016).
[26] Ho, K. M. et al. Photonic band gaps in three dimensions: new layer-by-layer periodic structures. Solid State Communications 89, 413-416 (1994).