[1] |
Wan, X. G. et al. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011). doi: 10.1103/PhysRevB.83.205101 |
[2] |
Liu, Z. K. et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science 343, 864–867 (2014). doi: 10.1126/science.1245085 |
[3] |
Xu, S. Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015). doi: 10.1126/science.aaa9297 |
[4] |
Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Modern Phys. 90, 015001 (2018). doi: 10.1103/RevModPhys.90.015001 |
[5] |
Lu, L. et al. Weyl points and line nodes in gyroid photonic crystals. Nat. Photonics 7, 294–299 (2013). doi: 10.1038/nphoton.2013.42 |
[6] |
Lu, L. et al. Experimental observation of Weyl points. Science 349, 622–624 (2015). doi: 10.1126/science.aaa9273 |
[7] |
Chen, W. J., Xiao, M. & Chan, C. T. Photonic crystals possessing multiple Weyl points and the experimental observation of robust surface states. Nat. Commun. 7, 13038 (2016). doi: 10.1038/ncomms13038 |
[8] |
Noh, J. et al. Experimental observation of optical Weyl points and Fermi arc-like surface states. Nat. Phys. 13, 611–617 (2017). doi: 10.1038/nphys4072 |
[9] |
Chang, M. L. et al. Multiple Weyl points and the sign change of their topological charges in woodpile photonic crystals. Phys. Rev. B 95, 125136 (2017). doi: 10.1103/PhysRevB.95.125136 |
[10] |
Yang, B. et al. Ideal Weyl points and helicoid surface states in artificial photonic crystal structures. Science 359, 1013–1016 (2018). doi: 10.1126/science.aaq1221 |
[11] |
Wang, H. X. et al. Three-dimensional photonic Dirac points stabilized by point group symmetry. Phys. Rev. B 93, 235155 (2016). doi: 10.1103/PhysRevB.93.235155 |
[12] |
Wang, H. X. et al. Type-Ⅱ Dirac photons. npj Quantum Mater. 2, 54 (2017). doi: 10.1038/s41535-017-0058-z |
[13] |
Guo, Q. H. et al. Observation of three-dimensional photonic Dirac points and spin-polarized surface arcs. Phys. Rev. Lett. 122, 203903 (2019). doi: 10.1103/PhysRevLett.122.203903 |
[14] |
Weng, H. M. et al. Topological node-line semimetal in three-dimensional graphene networks. Phys. Rev. B 92, 045108 (2015). doi: 10.1103/PhysRevB.92.045108 |
[15] |
Chan, Y. H. et al. Ca3P2 and other topological semimetals with line nodes and drumhead surface states. Phys. Rev. B 93, 205132 (2016). doi: 10.1103/PhysRevB.93.205132 |
[16] |
Fang, C. et al. Topological nodal line semimetals. Chinese Phys. B 25, 117106 (2016). doi: 10.1088/1674-1056/25/11/117106 |
[17] |
Kim, Y. et al. M. Dirac line nodes in inversion-symmetric crystals. Phys. Rev. Lett. 115, 036806 (2015). doi: 10.1103/PhysRevLett.115.036806 |
[18] |
Yu, R. et al. Topological node-line semimetal and dirac semimetal state in antiperovskite Cu3PdN. Phys. Rev. Lett. 115, 036807 (2015). doi: 10.1103/PhysRevLett.115.036807 |
[19] |
Gao, Y. et al. A class of topological nodal rings and its realization in carbon networks. Phys. Rev. B 97, 121108 (2018). doi: 10.1103/PhysRevB.97.121108 |
[20] |
Zhang, X. M. et al. Hybrid nodal loop metal: unconventional magnetoresponse and material realization. Phys. Rev. B 97, 125143 (2018). doi: 10.1103/PhysRevB.97.125143 |
[21] |
He, J. et al. Type-Ⅱ nodal line semimetal. New J. Phys. 20, 053019 (2018). doi: 10.1088/1367-2630/aabdf8 |
[22] |
Kawakami, T. & Hu, X. Symmetry-guaranteed nodal-line semimetals in an fcc lattice. Phys. Rev. B 96, 235307 (2017). doi: 10.1103/PhysRevB.96.235307 |
[23] |
Yan, Q. H. et al. Experimental discovery of nodal chains. Nat. Phys. 14, 461–464 (2018). doi: 10.1038/s41567-017-0041-4 |
[24] |
Gao, W. L. et al. Experimental observation of photonic nodal line degeneracies in metacrystals. Nat. Commun. 9, 950 (2018). doi: 10.1038/s41467-018-03407-5 |
[25] |
Xia, L. B. et al. Observation of hourglass nodal lines in photonics. Phys. Rev. Lett. 122, 103903 (2019). doi: 10.1103/PhysRevLett.122.103903 |
[26] |
Bradlyn, B. et al. Beyond Dirac and Weyl fermions: unconventional quasiparticles in conventional crystals. Science 353, aaf5037 (2016). doi: 10.1126/science.aaf5037 |
[27] |
Saba, M. et al. Group theoretical route to deterministic Weyl points in chiral photonic lattices. Phys. Rev. Lett. 119, 227401 (2017). doi: 10.1103/PhysRevLett.119.227401 |
[28] |
Hu, H. P. et al. Topological triply degenerate points induced by spin-tensor-momentum couplings. Phys. Rev. Lett. 120, 240401 (2018). doi: 10.1103/PhysRevLett.120.240401 |
[29] |
Yang, Y. H. et al. Topological triply degenerate point with double Fermi arcs. Nat. Phys. 15, 645–649 (2019). doi: 10.1038/s41567-019-0502-z |
[30] |
Zhang, T. T. et al. Double-Weyl phonons in transition-metal monosilicides. Phys. Rev. Lett. 120, 016401 (2018). doi: 10.1103/PhysRevLett.120.016401 |
[31] |
Zhu, Z. M. et al. Triple point topological metals. Phys. Rev. X 6, 031003 (2016). |
[32] |
Chang, G. Q. et al. Nexus fermions in topological symmorphic crystalline metals. Sci. Rep. 7, 1688 (2017). doi: 10.1038/s41598-017-01523-8 |
[33] |
Lv, B. Q. et al. Observation of three-component fermions in the topological semimetal molybdenum phosphide. Nature 546, 627–631 (2017). doi: 10.1038/nature22390 |
[34] |
Zhang, J. et al. Topological band crossings in hexagonal materials. Phys. Rev. Mater. 2, 074201 (2018). doi: 10.1103/PhysRevMaterials.2.074201 |
[35] |
Chan, Y. H. et al. Symmetry-enforced band crossings in trigonal materials: Accordion states and Weyl nodal lines. Phys. Rev. Mater. 3, 124204 (2019). doi: 10.1103/PhysRevMaterials.3.124204 |
[36] |
Watanabe, H. & Lu, L. Space group theory of photonic bands. Phys. Rev. Lett. 121, 263903 (2018). doi: 10.1103/PhysRevLett.121.263903 |
[37] |
Cornwall, J. M. Center vortices, nexuses, and the Georgi-Glashow model. Phys. Rev. D 59, 125015 (1999). doi: 10.1103/PhysRevD.59.125015 |
[38] |
Volovik, G. E. Monopoles and fractional vortices in chiral superconductors. Proc. Natl Acad. Sci. USA 97, 2431–2436 (2000). doi: 10.1073/pnas.97.6.2431 |
[39] |
Heikkilä, T. T. & Volovik, G. E. Nexus and Dirac lines in topological materials. New J. Phys. 17, 093019 (2015). doi: 10.1088/1367-2630/17/9/093019 |
[40] |
Diebel, F. et al. Conical diffraction and composite Lieb bosons in photonic lattices. Phys. Rev. Lett. 116, 183902 (2016). doi: 10.1103/PhysRevLett.116.183902 |
[41] |
Kopský, V. & Litvin, D. B. International Tables for Crystallography, Volume E: Subperiodic Groups (Kluwer Academic Publishers, London, 2002). |
[42] |
Mostafazadeh, A. Pseudounitary operators and pseudounitary quantum dynamics. J. Math. Phys. 45, 932–946 (2004). doi: 10.1063/1.1646448 |
[43] |
Green, D., Santos, L. & Chamon, C. Isolated flat bands and spin-1 conical bands in two-dimensional lattices. Phys. Rev. B 82, 075104 (2010). doi: 10.1103/PhysRevB.82.075104 |
[44] |
Huang, X. Q. et al. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nat. Mater. 10, 582–586 (2011). doi: 10.1038/nmat3030 |
[45] |
Berry, M. V. & Jeffrey, M. R. Conical diffraction: Hamilton's diabolical point at the heart of crystal optics. Prog. Optics 50, 13–50 (2007). doi: 10.1016/S0079-6638(07)50002-8 |
[46] |
Peleg, O. et al. Conical diffraction and gap solitons in honeycomb photonic lattices. Phys. Rev. Lett. 98, 103901 (2007). doi: 10.1103/PhysRevLett.98.103901 |
[47] |
Liu, F. & Li, J. Gauge field optics with anisotropic media. Phys. Rev. Lett. 114, 103902 (2015). doi: 10.1103/PhysRevLett.114.103902 |
[48] |
Chen, Y. T. et al. Non-Abelian gauge field optics. Nat. Commun. 10, 3125 (2019). doi: 10.1038/s41467-019-10974-8 |
[49] |
Jisha, C. P. et al. Self-trapping of light using the Pancharatnam-Berry phase. Phys. Rev. X 9, 021051 (2019). |
[50] |
Rechcińska, K. et al. Engineering spin-orbit synthetic Hamiltonians in liquid-crystal optical cavities. Science 366, 727–730 (2019). doi: 10.1126/science.aay4182 |