[1] Wollman, A. J. M. et al. From Animaculum to single molecules: 300 years of the light microscope. Open Biology 5, 150019 (2015). doi: 10.1098/rsob.150019
[2] Hooke, R. Micrographia: or, some physiological descriptions of minute bodies made by magnifying glasses with observations and inquiries thereupon (London: Printed by J. Martyn and J. Allestry, 1665).
[3] Baker, H. IX. An account of Mr. Leeuwenhoek's microscopes. Philosophical Transactions of the Royal Society of London 41, 503-519 (1740). doi: 10.1098/rstl.1739.0085
[4] Koch, R. Die Ätiologie der Tuberkulose (1882). In Robert Koch (ed. Gradmann, C.) (Springer Berlin Heidelberg, 2018), 113–131.
[5] Trukhova, A. et al. Microlens-assisted microscopy for biology and medicine. Journal of Biophotonics 15, e202200078 (2022). doi: 10.1002/jbio.202200078
[6] Ishikawa, R., Tanigaki, T. & Fukuda, Y. Resolution does matter. Microscopy 72, 65 (2023). doi: 10.1093/jmicro/dfad010
[7] Huszka, G. & Gijs, M. A. M. Super-resolution optical imaging: A comparison. Micro and Nano Engineering 2, 7-28 (2019). doi: 10.1016/j.mne.2018.11.005
[8] Fillard, J. P. Near field optics and nanoscopy. (Singarpore: World Scientific, 1996).
[9] Hell, S. & Stelzer, E. H. K. Properties of a 4Pi confocal fluorescence microscope. Journal of the Optical Society of America A 9, 2159-2166 (1992).
[10] Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulatedemission-depletion fluorescence microscopy. Optics Letters 19, 780-782 (1994). doi: 10.1364/OL.19.000780
[11] Huang, B., Bates, M. & Zhuang, X. W. Superresolution fluorescence microscopy. Annual Review of Biochemistry 78, 993-1016 (2009). doi: 10.1146/annurev.biochem.77.061906.092014
[12] Pohl, D. W., Denk, W. & Lanz, M. Optical stethoscopy: image recording with resolution λ/20. Applied Physics Letters 44, 651-653 (1984). doi: 10.1063/1.94865
[13] Darafsheh, A. Photonic nanojets and their applications. Journal of Physics: Photonics 3, 022001 (2021). doi: 10.1088/2515-7647/abdb05
[14] Li, H. et al. Optical trapping, sensing, and imaging by photonic nanojets. Photonics 8, 434 (2021). doi: 10.3390/photonics8100434
[15] Yang, H. et al. Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet. Nano Letters 16, 4862-4870 (2016). doi: 10.1021/acs.nanolett.6b01255
[16] Heifetz, A. et al. Photonic nanojets. Journal of Computational and Theoretical Nanoscience 6, 1979-1992 (2009). doi: 10.1166/jctn.2009.1254
[17] Pacheco-Peña, V. & Beruete, M. Photonic nanojets with mesoscale high-index dielectric particles. Journal of Applied Physics 125, 084104 (2019). doi: 10.1063/1.5086175
[18] Zhu, J. L. & Goddard, L. L. All-dielectric concentration of electromagnetic fields at the nanoscale: the role of photonic nanojets. Nanoscale Advances 1, 4615-4643 (2019). doi: 10.1039/C9NA00430K
[19] Chen, Z. G., Taflove, A. & Backman, V. Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique. Optics Express 12, 1214-1220 (2004). doi: 10.1364/OPEX.12.001214
[20] Lu, Y. F., Zheng, Y. W. & Song, W. D. Laser induced removal of spherical particles from silicon wafers. Journal of Applied Physics 87, 1534-1539 (2000). doi: 10.1063/1.372045
[21] Hüser, L. et al. Microsphere assistance in interference microscopy with high numerical aperture objective lenses. Journal of Optical Microsystems 2, 044501 (2022).
[22] Darafsheh, A. Microsphere-assisted microscopy. Journal of Applied Physics 131, 031102 (2022). doi: 10.1063/5.0068263
[23] Darafsheh, A. & Abbasian, V. Dielectric microspheres enhance microscopy resolution mainly due to increasing the effective numerical aperture. Light: Science & Applications 12, 22 (2023).
[24] Wang, Z. B. et al. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nature Communications 2, 218 (2011). doi: 10.1038/ncomms1211
[25] Darafsheh, A., Li, Y. C. & Astratov, V. N. Superresolution microscopy by dielectric microcylinders. Proceedings of the 15th International Conference on Transparent Optical Networks. Spain: IEEE, 1-3 (2013).
[26] Kassamakov, I. et al. 3D super-resolution optical profiling using microsphere enhanced mirau interferometry. Scientific Reports 7, 3683 (2017). doi: 10.1038/s41598-017-03830-6
[27] Darafsheh, A. et al. Optical super-resolution by highindex liquid-immersed microspheres. Applied Physics Letters 101, 141128 (2012). doi: 10.1063/1.4757600
[28] Darafsheh, A. et al. Optical super-resolution imaging by high-index microspheres embedded in elastomers. Optics Letters 40, 5-8 (2015). doi: 10.1364/OL.40.000005
[29] Farsari, M. & Chichkov, B. N. Two-photon fabrication. Nature Photonics 3, 450-452 (2009). doi: 10.1038/nphoton.2009.131
[30] Skliutas, E. et al. Polymerization mechanisms initiated by spatio-temporally confined light. Nanophotonics 10, 1211-1242 (2021). doi: 10.1515/nanoph-2020-0551
[31] Skliutas, E. et al. X-photon laser direct write 3D nanolithography. Virtual and Physical Prototyping 18, e2228324 (2023). doi: 10.1080/17452759.2023.2228324
[32] Maibohm, C. et al. Multi-beam two-photon polymerization for fast large area 3D periodic structure fabrication for bioapplications. Scientific Reports 10, 8740 (2020). doi: 10.1038/s41598-020-64955-9
[33] Marini, M. et al. Microlenses fabricated by two-photon laser polymerization for cell imaging with non-linear excitation microscopy. Advanced Functional Materials 33, 2213926 (2023). doi: 10.1002/adfm.202213926
[34] Gonzalez-Hernandez, D. et al. Micro-optics 3D printed via multi-photon laser lithography. Advanced Optical Materials 11, 2201701 (2023). doi: 10.1002/adom.202201701
[35] Katsantonis, I. et al. Strong and broadband pure optical activity in 3d printed thz chiral metamaterials. Advanced Optical Materials 11, 2300238 (2023). doi: 10.1002/adom.202300238
[36] Zyla, G. et al. Generation of bioinspired structural colors via two-photon polymerization. Scientific Reports 7, 17622 (2017). doi: 10.1038/s41598-017-17914-w
[37] Zyla, G. et al. Two-photon polymerization as a potential manufacturing tool for biomimetic engineering of complex structures found in nature. Journal of Optical Microsystems 2, 031203 (2022).
[38] Malinauskas, M. et al. Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization. Journal of Optics 12, 124010 (2010). doi: 10.1088/2040-8978/12/12/124010
[39] Aakhte, M. et al. Microsphere-assisted superresolved mirau digital holographic microscopy for cell identification. Applied Optics 56, D8-D13 (2017). doi: 10.1364/AO.56.0000D8
[40] Abbasian, V. et al. Super-resolved microsphereassisted mirau digital holography by oblique illumination. Journal of Optics 20, 065301 (2018). doi: 10.1088/2040-8986/aac22f
[41] Marx, J. et al. Fabrication of rectangular microchannels by ultrashort pulse ablation using a bessel beam. Journal of Laser Micro/Nanoengineering 17, 150-155 (2022).
[42] Ladika, D. et al. Synthesis and application of triphenylamine-based aldehydes as photo-initiators for multi-photon lithography. Applied Physics A 128, 745 (2022). doi: 10.1007/s00339-022-05887-1
[43] Sakellari, I. et al. Diffusion-assisted high-resolution direct femtosecond laser writing. ACS Nano 6, 2302-2311 (2012). doi: 10.1021/nn204454c
[44] Astrauskyte, D. et al. Anti-Reflective Coatings · Produced via Atomic Layer Deposition for Hybrid Polymer 3D Micro-Optics. Nanomaterials 13, 2281 (2023). doi: 10.3390/nano13162281
[45] Buchroithner, B. et al. 3D multiphoton lithography using biocompatible polymers with specific mechanical properties. Nanoscale Advances 2, 2422-2428 (2020). doi: 10.1039/D0NA00154F
[46] O’Halloran, S. et al. Two-photon polymerization: fundamentals, materials, and chemical modification strategies. Advanced Science 10, 2204072 (2023). doi: 10.1002/advs.202204072
[47] Schmid, M. et al. Adjustment-free two-sided 3D direct laser writing for aligned micro-optics on both substrate sides. Optics Letters 48, 131-134 (2023). doi: 10.1364/OL.476448
[48] Park, S. H. et al. Subregional slicingmethod to increase three-dimensional nanofabrication efficiency in twophoton polymerization. Applied Physics Letters 87, 154108 (2005). doi: 10.1063/1.2103393
[49] Zhou, X. Q., Hou, Y. H. & Lin, J. Q. A review on the processing accuracy of two-photon polymerization. AIP Advances 5, 030701 (2015). doi: 10.1063/1.4916886
[50] Guo, R. et al. Micro lens fabrication by means of femtosecond two photon photopolymerization. Optics Express 14, 810-816 (2006). doi: 10.1364/OPEX.14.000810
[51] Fischer, J. & Wegener, M. Three-dimensional optical laser lithography beyond the diffraction limit. Laser & Photonics Reviews 7, 22-44 (2013).
[52] Juodkazis, S. et al. Two-photon lithography of nanorods in su-8 photoresist. Nanotechnology 16, 846-849 (2005). doi: 10.1088/0957-4484/16/6/039
[53] Abbe, E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für Mikroskopische Anatomie 9, 413-468 (1873).
[54] Li, H. D. & Hartley, R. Five-point motion estimation made easy. Proceeding of the 18th International Conference on Pattern Recognition. Hong Kong, China: IEEE, 2006, 630–633.
[55] Savitzky, A. & Golay, M. J. E. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry 36, 1627-1639 (1964). doi: 10.1021/ac60214a047
[56] Žukauskas, A. et al. Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics. Laser & Photonics Reviews 9, 706-712 (2015).
[57] Kajiya, J. The rendering equation. ACM SIGGRAPH Computer Graphics 20, 143-150 (1986). doi: 10.1145/15886.15902
[58] Georgakopoulos-Soares, I., Papazoglou, E. L. & Markopoulos, A. P. On the use of the Perlin noise function to calculate the laser absorption coefficient by rough surfaces. Simulation Modelling Practice and Theory 124, 102722 (2023). doi: 10.1016/j.simpat.2022.102722
[59] Ta ng, F. et al. Generation of photonic hooks from patchy microcylinders. Photonics 8, 466 (2021). doi: 10.3390/photonics8110466
[60] Yang, S. L. et al. Converting evanescent waves into propagating waves: the super-resolution mechanism in microsphere-assisted microscopy. The Journal of Physical Chemistry C 124, 25951-25956 (2020). doi: 10.1021/acs.jpcc.0c07067
[61] Aderneuer, T., Fernández, O. & Ferrini, R. Two-photon grayscale lithography for free-form microoptical arrays. Optics Express 29, 39511-39520 (2021). doi: 10.1364/OE.440251
[62] Gonzalez-Hernandez, D. et al. Single-step 3d printing of micro-optics with adjustable refractive index by ultrafast laser nanolithography. Advanced Optical Materials 11, 2300258 (2023). doi: 10.1002/adom.202300258
[63] Schmid, M., Ludescher, D. & Giessen, H. Optical properties of photoresists for femtosecond 3D printing: refractive index, extinction, luminescence-dose dependence, aging, heat treatment and comparison between 1-photon and 2-photon exposure. Optical Materials Express 9, 4564-4577 (2019). doi: 10.1364/OME.9.004564
[64] Heifetz, A. et al. Subdiffraction optical resolution of a gold nanosphere located within the nanojet of a Mieresonant dielectric microsphere. Optics Express 15, 17334-17342 (200).
[65] Nolvi, A. et al. Wide field of view 3D labelfree super-resolution imaging. Proceedings of SPIE 10539, Photonic Instrumentation Engineering V. San Francisco, United States: SPIE, 2018, 232–239.
[66] Darafsheh, A. & Bollinger, D. Systematic study of the characteristics of the photonic nanojets formed by dielectric microcylinders. Optics Communications 402, 270-275 (2017). doi: 10.1016/j.optcom.2017.06.004