[1] Ma, C. et al. Robust flexible pressure sensors made from conductive micropyramids for manipulation tasks. ACS Nano 14, 12866-12876 (2020). doi: 10.1021/acsnano.0c03659
[2] Huang, J. R. et al. High-performance flexible capacitive proximity and pressure sensors with spiral electrodes for continuous human–machine interaction. ACS Materials Letters 4, 2261-2272 (2022). doi: 10.1021/acsmaterialslett.2c00860
[3] Pang, Y. et al. Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity. ACS Nano 12, 2346-2354 (2018). doi: 10.1021/acsnano.7b07613
[4] Sun, H. et al. Flexible capacitive sensor based on Miura-ori structure. Chemical Engineering Journal 468, 143514 (2023). doi: 10.1016/j.cej.2023.143514
[5] Chortos, A., Liu, J. & Bao, Z. N. Pursuing prosthetic electronic skin. Nature Materials 15, 937-950 (2016). doi: 10.1038/nmat4671
[6] Duan, S. S. et al. A skin-beyond tactile sensor as interfaces between the prosthetics and biological systems. Nano Energy 102, 107665 (2022). doi: 10.1016/j.nanoen.2022.107665
[7] Yang, W. D. et al. A theoretical model of a flexible capacitive pressure sensor with microstructured electrodes for highly sensitive electronic skin. Journal of Physics D:Applied Physics 55, 094001 (2022). doi: 10.1088/1361-6463/ac34a9
[8] Choong, C. L. et al. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Advanced Materials 26, 3451-3458 (2014). doi: 10.1002/adma.201305182
[9] Wang, J. et al. Flexible capacitive pressure sensors with micro-patterned porous dielectric layer for wearable electronics. Journal of Micromechanics and Microengineering 32, 034003 (2022). doi: 10.1088/1361-6439/ac49a3
[10] Zhao, L. et al. Biomimetic-inspired highly sensitive flexible capacitive pressure sensor with high-aspect-ratio microstructures. Current Applied Physics 31, 29-37 (2021). doi: 10.1016/j.cap.2021.07.014
[11] Chen, Z. F. et al. Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures. ACS Nano 11, 4507-4513 (2017). doi: 10.1021/acsnano.6b08027
[12] Li, T. et al. From dual-mode triboelectric nanogenerator to smart tactile sensor: a multiplexing design. ACS Nano 11, 3950-3956 (2017). doi: 10.1021/acsnano.7b00396
[13] Zhao, S. F. et al. 3D dielectric layer enabled highly sensitive capacitive pressure sensors for wearable electronics. ACS Applied Materials & Interfaces 12, 32023-32030 (2020).
[14] Mannsfeld, S. C. B. et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nature Materials 9, 859-864 (2010). doi: 10.1038/nmat2834
[15] Bijender & Kumar, A. Effect of porosity and microstructure on the functionality of capacitive pressure sensors. Materials Chemistry and Physics 304, 127872 (2023). doi: 10.1016/j.matchemphys.2023.127872
[16] Tee, B. C. K. et al. Tunable flexible pressure sensors using microstructured elastomer geometries for intuitive electronics. Advanced Functional Materials 24, 5427-5434 (2014). doi: 10.1002/adfm.201400712
[17] Ruth, S. R. A. & Bao, Z. N. Designing tunable capacitive pressure sensors based on material properties and microstructure geometry. ACS Applied Materials & Interfaces 12, 58301-58316 (2020).
[18] Yang, C. R. et al. Highly sensitive and wearable capacitive pressure sensors based on PVDF/BaTiO3 composite fibers on PDMS microcylindrical structures. Measurement 202, 111817 (2022). doi: 10.1016/j.measurement.2022.111817
[19] Luo, Y. S. et al. Flexible capacitive pressure sensor enhanced by tilted micropillar arrays. ACS Applied Materials & Interfaces 11, 17796-17803 (2019).
[20] Thouti, E. et al. Flexible capacitive pressure sensors using microdome like structured polydimethylsiloxane dielectric layers. Sensors and Actuators A:Physical 335, 113393 (2022). doi: 10.1016/j.sna.2022.113393
[21] Ying, S. et al. A flexible piezocapacitive pressure sensor with microsphere-array electrodes. Nanomaterials 13, 1702 (2023). doi: 10.3390/nano13111702
[22] Kim, Y., Yang, H. & Oh, J. H. Simple fabrication of highly sensitive capacitive pressure sensors using a porous dielectric layer with cone-shaped patterns. Materials & Design 197, 109203 (2021).
[23] Zhang, Z. A. et al. Highly sensitive capacitive pressure sensor based on a micropyramid array for health and motion monitoring. Advanced Electronic Materials 7, 2100174 (2021). doi: 10.1002/aelm.202100174
[24] Hua, T. et al. A sensitivity-optimized flexible capacitive pressure sensor with cylindrical ladder microstructural dielectric layers. Sensors 23, 4323 (2023). doi: 10.3390/s23094323
[25] Wan, Y. B. et al. A highly sensitive flexible capacitive tactile sensor with sparse and high-aspect-ratio microstructures. Advanced Electronic Materials 4, 1700586 (2018). doi: 10.1002/aelm.201700586
[26] Qu, C. K. et al. Flexible microstructured capacitive pressure sensors using laser engraving and graphitization from natural wood. Molecules 28, 5339 (2023). doi: 10.3390/molecules28145339
[27] Gao, S. R. et al. Direct optical micropatterning of poly(dimethylsiloxane) for microfluidic devices. Journal of Micromechanics and Microengineering 28, 095011 (2018). doi: 10.1088/1361-6439/aac44d
[28] Li, T. et al. Advancing pressure sensors performance through a flexible MXene embedded interlocking structure in a microlens array. Nano Research 16, 10493-10499 (2023). doi: 10.1007/s12274-023-5727-6
[29] Tong, Z. M. et al. Facile fabrication of microstructured surface using laser speckle for high-sensitivity capacitive pressure sensors. Science China Technological Sciences 66, 155-164 (2023). doi: 10.1007/s11431-022-2250-8
[30] Goodman, J. W. Speckle Phenomena in Optics: Theory and Applications. (Englewood: Roberts and Company Publishers, 2007).
[31] Dainty, J. C. Laser Speckle and Related Phenomena. (New York: Springer, 2013).
[32] Koukharenko, E. et al. A comparative study of different thick photoresists for MEMS applications. Journal of Materials Science:Materials in Electronics 16, 741-747 (2005). doi: 10.1007/s10854-005-4977-2
[33] Chia, C. & Martis, J. Grayscale Lithography and Resist Reflow for Parylene Patterning. (Stanford University, 2018).
[34] Wood, S. & Lopez, G. G. SUSS MicroTec MA6 Gen3–MicroChem SPR-220 7.0 Thickness vs. dose-to-Clear and Contrast Curve Data. (University of Pennsylvania, 2016).
[35] Kim, S. H. et al. PDMS double casting method enabled by plasma treatment and alcohol passivation. Sensors and Actuators B: Chemical 293, 115-121 (2019).
[36] Huang, H. et al. Research progresses in microstructure designs of flexible pressure sensors. Polymers 14, 3670 (2022). doi: 10.3390/polym14173670
[37] Tang, H. et al. Piezoresistive electronic skin based on diverse bionic microstructure. Sensors and Actuators A:Physical 318, 112532 (2021). doi: 10.1016/j.sna.2020.112532
[38] Lee, E. et al. Janus films with stretchable and waterproof properties for wound care and drug delivery applications. RSC Advances 6, 79900-79909 (2016). doi: 10.1039/C6RA16232K
[39] Yang, R. X. et al. Multimodal sensors with decoupled sensing mechanisms. Advanced Science 9, 2202470 (2022). doi: 10.1002/advs.202202470
[40] Gong, W. Z., Lian, J. H. & Zhu, Y. L. Capacitive flexible haptic sensor based on micro-cylindrical structure dielectric layer and its decoupling study. Measurement 223, 113785 (2023). doi: 10.1016/j.measurement.2023.113785
[41] Yang, R. X. et al. Iontronic pressure sensor with high sensitivity over ultra-broad linear range enabled by laser-induced gradient micro-pyramids. Nature Communications 14, 2907 (2023). doi: 10.1038/s41467-023-38274-2
[42] Bai, N. N. et al. Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity. Nature Communications 11, 209 (2020). doi: 10.1038/s41467-019-14054-9
[43] Zhang, W. Q. et al. Conformal manufacturing of soft deformable sensors on the curved surface. International Journal of Extreme Manufacturing 3, 042001 (2021). doi: 10.1088/2631-7990/ac1158
[44] Yi, N. et al. Fabricating functional circuits on 3D freeform surfaces via intense pulsed light-induced zinc mass transfer. Materials Today 50, 24-34 (2021). doi: 10.1016/j.mattod.2021.07.002
[45] Xu, H. C. et al. A fully integrated, standalone stretchable device platform with in-sensor adaptive machine learning for rehabilitation. Nature Communications 14, 7769 (2023). doi: 10.1038/s41467-023-43664-7
[46] Xie, Y. D. et al. A self-powered radio frequency (RF) transmission system based on the combination of triboelectric nanogenerator (TENG) and piezoelectric element for disaster rescue/relief. Nano Energy 54, 331-340 (2018). doi: 10.1016/j.nanoen.2018.10.021
[47] Lei, H. et al. Advances in self-powered triboelectric pressure sensors. Journal of Materials Chemistry A 9, 20100-20130 (2021). doi: 10.1039/D1TA03505C
[48] Li, Y. F., Zhang, J. H. & Yang, B. Antireflective surfaces based on biomimetic nanopillared arrays. Nano Today 5, 117-127 (2010). doi: 10.1016/j.nantod.2010.03.001
[49] Mahmood, A. et al. Nature-inspired design of conical array for continuous and efficient fog collection application. Colloid and Interface Science Communications 37, 100283 (2020). doi: 10.1016/j.colcom.2020.100283
[50] Chi, J. J. et al. Antibacterial and angiogenic chitosan microneedle array patch for promoting wound healing. Bioactive Materials 5, 253-259 (2020). doi: 10.1016/j.bioactmat.2020.02.004