[1] |
Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163-234 (2009). doi: 10.1103/RevModPhys.81.163 |
[2] |
Calegari, F. et al. Advances in attosecond science. J. Phys. B 49, 062001 (2016). doi: 10.1088/0953-4075/49/6/062001 |
[3] |
Ciappina, M. F. et al. Attosecond physics at the nanoscale. Rep. Progr. Phys. 80, 054401 (2017). doi: 10.1088/1361-6633/aa574e |
[4] |
Umstadter, D. Relativistic laser-plasma interactions. J. Phys. D 36, R151-R165 (2003). doi: 10.1088/0022-3727/36/8/202 |
[5] |
Mourou, G. A., Tajima, T. & Bulanov, S. V. Optics in the relativistic regime. Rev. Mod. Phys. 78, 309-371 (2006). doi: 10.1103/RevModPhys.78.309 |
[6] |
Di Piazza, A. et al. Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys. 84, 1177-1228 (2012). doi: 10.1103/RevModPhys.84.1177 |
[7] |
Malka, V. Laser plasma accelerators. Phys. Plasmas 19, 055501 (2012). doi: 10.1063/1.3695389 |
[8] |
Thaury, C. & Quéré, F. High-order harmonic and attosecond pulse generation on plasma mirrors: basic mechanisms. J. Phys. B 43, 213001 (2010). doi: 10.1088/0953-4075/43/21/213001 |
[9] |
Guénot, D. et al. Relativistic electron beams driven by kHz single-cycle light pulses. Nat. Photonics 11, 293-296 (2017). doi: 10.1038/nphoton.2017.46 |
[10] |
Jahn, O. et al. Towards intense isolated attosecond pulses from relativistic surface highharmonics. Optica 6, 280-287 (2019). doi: 10.1364/OPTICA.6.000280 |
[11] |
Zhang, Y. X. et al. Intense attosecond pulses from laser-irradiated near-critical-density plasmas. Opt. Express 25, 29058-29067 (2017). doi: 10.1364/OE.25.029058 |
[12] |
Gruson, V. et al. 2.5 TW, two-cycle IR laser pulses via frequency domain optical parametric amplification. Opt. Express 25, 27706-27714 (2017). doi: 10.1364/OE.25.027706 |
[13] |
Rivas, D. E. et al. Next generation driver for attosecond and laser-plasma physics. Scientific Rep. 7, 5224 (2017). doi: 10.1038/s41598-017-05082-w |
[14] |
Kessel, A. et al. Relativistic few-cycle pulses with high contrast from picosecond-pumped OPCPA. Optica 5, 434-442 (2018). doi: 10.1364/OPTICA.5.000434 |
[15] |
Kormin, D. et al. Spectral interferometry with waveform-dependent relativistic high-order harmonics from plasma surfaces. Nat. Commun. 9, 4992 (2018). doi: 10.1038/s41467-018-07421-5 |
[16] |
Schmid, K. et al. Few-cycle laser-driven electron acceleration. Phys. Rev. Lett. 102, 124801 (2009). doi: 10.1103/PhysRevLett.102.124801 |
[17] |
Hädrich, S. et al. Energetic sub-2-cycle laser with 216 W average power. Opt. Lett. 41, 4332-4335 (2016). doi: 10.1364/OL.41.004332 |
[18] |
Nisoli, M., De Silvestri, S. & Svelto, O. Generation of high energy 10 fs pulses by a new pulse compression technique. Appl. Phys. Lett. 68, 2793-2795 (1996). doi: 10.1063/1.116609 |
[19] |
Jeong, Y. G. et al. Direct compression of 170-fs 50-cycle pulses down to 1.5 cycles with 70% transmission. Scientific Rep. 8, 11794 (2018). doi: 10.1038/s41598-018-30198-y |
[20] |
Baltuška, A., Fuji, T. & Kobayashi, T. Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers. Phys. Rev. Lett. 88, 133901 (2002). doi: 10.1103/PhysRevLett.88.133901 |
[21] |
Budriūnas, R. et al. 53 W average power CEP-stabilized OPCPA system delivering 5.5 TW few cycle pulses at 1 kHz repetition rate. Opt. Express 25, 5797-5806 (2017). doi: 10.1364/OE.25.005797 |
[22] |
Farinella, D. M. et al. Focusability of laser pulses at petawatt transport intensities in thin-film compression. J. Opt. Soc. Am. B 36, A28-A32 (2019). doi: 10.1364/JOSAB.36.000A28 |
[23] |
Zhu, X. L. et al. Single-cycle terawatt twisted-light pulses at midinfrared wavelengths above 10 μm. Phys. Rev. Appl. 12, 054024 (2019). doi: 10.1103/PhysRevApplied.12.054024 |
[24] |
Vozzi, C. et al. Optimal spectral broadening in hollow-fiber compressor systems. Appl. Phys. B 80, 285-289 (2005). doi: 10.1007/s00340-004-1721-1 |
[25] |
Bohman, S. et al. Generation of 5.0fs, 5.0mJ pulses at 1kHz using hollow-fiber pulse compression. Opt. Lett. 35, 1887-1889 (2010). doi: 10.1364/OL.35.001887 |
[26] |
Böhle, F. et al. Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers. Laser Phys. Lett. 11, 095401 (2014). doi: 10.1088/1612-2011/11/9/095401 |
[27] |
Jullien, A. et al. Carrier-envelope-phase stable, high-contrast, double chirped-pulse-amplification laser system. Opt. Lett. 39, 3774-3777 (2014). doi: 10.1364/OL.39.003774 |
[28] |
Agrawal, G. P. Nonlinear Fiber Optics 5th edn (Academic Press, Oxford, 2013). |
[29] |
Nagy, T., Forster, M. & Simon, P. Flexible hollow fiber for pulse compressors. Appl. Opt. 47, 3264-3268 (2008). doi: 10.1364/AO.47.003264 |
[30] |
Nagy, T., Pervak, V. & Simon, P. Optimal pulse compression in long hollow fibers. Opt. Lett. 36, 4422-4424 (2011). doi: 10.1364/OL.36.004422 |
[31] |
Suda, A. et al. Generation of sub-10-fs, 5-mJ-optical pulses using a hollow fiber with a pressure gradient. Appl. Phys. Lett. 86, 111116 (2005). doi: 10.1063/1.1883706 |
[32] |
Ghimire, S. et al. High-energy 6.2-fs pulses for attosecond pulse generation. Laser Phys. 15, 838-842 (2005). http://www.researchgate.net/publication/290652891_High-energy_62-fs_pulses_for_attosecond_pulse_generation |
[33] |
Chen, X. W. et al. Generation of 4.3 fs, 1mJ laser pulses via compression of circularly polarized pulses in a gas-filled hollow-core fiber. Opt. Lett. 34, 1588-1590 (2009). doi: 10.1364/OL.34.001588 |
[34] |
Malvache, A. et al. Multi-mJ pulse compression in hollow fibers using circular polarization. Appl. Phys. B 104, 5-9 (2011). doi: 10.1007/s00340-011-4663-4 |
[35] |
Miranda, M. et al. Characterization of broadband few-cycle laser pulses with the d-scan technique. Opt. Express 20, 18732-18743 (2012). doi: 10.1364/OE.20.018732 |
[36] |
Schmidt, B. E. et al. Compression of 1.8 μm laser pulses to sub two optical cycles with bulk material. Appl. Phys. Lett. 96, 121109 (2010). doi: 10.1063/1.3359458 |
[37] |
Suda, A. & Takeda, T. Effects of nonlinear chirp on the self-phase modulation of ultrashort optical pulses. Appl. Sci. 2, 549-557 (2012). doi: 10.3390/app2020549 |
[38] |
ConejeroJarque, E. et al. Universal route to optimal few-tosingle-cycle pulse generation in hollow-core fiber compressors. Scientific Rep. 8, 2256 (2018). doi: 10.1038/s41598-018-20580-1 |
[39] |
Timmers, H. et al. Generating high-contrast, near single-cycle waveforms with third-order dispersion compensation. Opt. Lett. 42, 811-814 (2017). doi: 10.1364/OL.42.000811 |
[40] |
Brabec, T. & Krausz, F. Nonlinear optical pulse propagation in the single-cycle regime. Phys. Rev. Lett. 78, 3282-3285 (1997). doi: 10.1103/PhysRevLett.78.3282 |
[41] |
Deiterding, R. et al. A reliable split-step fourier method for the propagation equation of ultra-fast pulses in single-mode optical fibers. J. LightwaveTechnol. 31, 2008-2017 (2013). doi: 10.1109/JLT.2013.2262654 |
[42] |
Haessler, S. 1D femtosecond pulse propagation in a medium with dispersion and 3rd-order nonlinearities. GitHub repository at https://github.com/mightymightys/Nonlinear-propagation. |
[43] |
Oksenhendler, T. et al. Self-referenced spectral interferometry. Appl. Phys. B 99, 7-12 (2010). doi: 10.1007/s00340-010-3916-y |
[44] |
Pinault, S. C. & Potasek, M. J. Frequency broadening by self-phase modulation in optical fibers. J. Opt. Soc. Am. B 2, 1318-1319 (1985). doi: 10.1364/JOSAB.2.001318 |
[45] |
Faure, J. et al. A review of recent progress on laser-plasma acceleration at kHz repetition rate. Plasma Phys. Control. Fusion 61, 014012 (2019). doi: 10.1088/1361-6587/aae047 |
[46] |
Gustas, D. et al. High-charge relativistic electron bunches from a kHz laser-plasma accelerator. Phys. Rev. Accel. Beams 21, 013401 (2018). doi: 10.1103/PhysRevAccelBeams.21.013401 |
[47] |
Pak, A. et al. Injection and trapping of tunnel-ionized electrons into laser-produced wakes. Phys. Rev. Lett. 104, 025003 (2010). doi: 10.1103/PhysRevLett.104.025003 |
[48] |
McGuffey, C. et al. Ionization induced trapping in a laser wakefield accelerator. Phys. Rev. Lett. 104, 025004 (2010). doi: 10.1103/PhysRevLett.104.025004 |
[49] |
Lifschitz, A. F. & Malka, V. Optical phase effects in electron wakefield acceleration using few-cycle laser pulses. N. J. Phys. 14, 053045 (2012). doi: 10.1088/1367-2630/14/5/053045 |
[50] |
Jullien, A. et al. 10-10 temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation. Opt. Lett. 30, 920-922 (2005). doi: 10.1364/OL.30.000920 |