[1] Yu, N. F. et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 334, 333-337 (2011). doi: 10.1126/science.1210713
[2] Li, L. L. et al. Electromagnetic reprogrammable coding-metasurface holograms. Nature Communications 8, 197 (2017). doi: 10.1038/s41467-017-00164-9
[3] Bao, L. et al. Full-space manipulations of electromagnetic wavefronts at two frequencies by encoding both amplitude and phase of metasurface. Advanced Materials Technologies 6, 2001032 (2021). doi: 10.1002/admt.202001032
[4] Han, Y. J. et al. Miniaturized-element offset-feed planar reflector antennas based on metasurfaces. IEEE Antennas and Wireless Propagation Letters 16, 282-285 (2017). doi: 10.1109/LAWP.2016.2572878
[5] Cui, T. J. et al. Coding metamaterials, digital metamaterials and programmable metamaterials. Light: Science & Applications 3 , e218 (2014).
[6] Islam, S. S. et al. A new metamaterial-based wideband rectangular invisibility cloak. Applied Physics A 124, 160 (2018). doi: 10.1007/s00339-018-1590-9
[7] Jing, X. F. et al. Design of two invisibility cloaks using transmissive and reflective metamaterial-based multilayer frame microstructures. Optics Express 28, 35528-35539 (2020). doi: 10.1364/OE.409137
[8] Zhu, H. E. et al. Polymer colloidal sphere-based hybrid solid immersion lens for optical super-resolution imaging. ACS Nano 10, 9755-9761 (2016). doi: 10.1021/acsnano.6b06236
[9] Song, G. Y. et al. Broadband focusing acoustic lens based on fractal metamaterials. Scientific Reports 6, 35929 (2016). doi: 10.1038/srep35929
[10] Islam, M. M. et al. Compact metamaterial antenna for UWB applications. Electronics Letters 51, 1222-1224 (2015). doi: 10.1049/el.2015.2131
[11] Bao, L. et al. Design of digital coding metasurfaces with independent controls of phase and amplitude responses. Applied Physics Letters 113, 063502 (2018). doi: 10.1063/1.5043520
[12] Wang, H. L. et al. A reconfigurable multifunctional metasurface for full-space controls of electromagnetic waves. Advanced Functional Materials 31, 2100275 (2021). doi: 10.1002/adfm.202100275
[13] Teng, S. Y. et al. Conversion between polarization states based on a metasurface. Photonics Research 7, 246-250 (2019). doi: 10.1364/PRJ.7.000246
[14] Hu, Q. et al. Arbitrary and dynamic poincaré sphere polarization converter with a time-varying metasurface. Advanced Optical Materials 10, 2101915 (2022). doi: 10.1002/adom.202101915
[15] Zhang, Y. et al. Anomalous reflection and vortex beam generation by multi-bit coding acoustic metasurfaces. Applied Physics Letters 114, 091905 (2019). doi: 10.1063/1.5087636
[16] Zhang, L., Guo, J. & Ding, T. Y. Ultrathin dual-mode vortex beam generator based on anisotropic coding metasurface. Scientific Reports 11, 5766 (2021). doi: 10.1038/s41598-021-85374-4
[17] Terekhov, P. D. et al. Enhanced absorption in all-dielectric metasurfaces due to magnetic dipole excitation. Scientific Reports 9, 3438 (2019). doi: 10.1038/s41598-019-40226-0
[18] Lv, H. L. et al. An electrical switch-driven flexible electromagnetic absorber. Advanced Functional Materials 30, 1907251 (2020). doi: 10.1002/adfm.201907251
[19] Zhu, R. C. et al. Deep-learning-empowered holographic metasurface with simultaneously customized phase and amplitude. ACS Applied Materials & Interfaces 14, 48303-48310 (2022).
[20] Hu, J. P. et al. All-dielectric metasurface circular dichroism waveplate. Scientific Reports 7, 41893 (2017). doi: 10.1038/srep41893
[21] Shah, Y. D. et al. An all-dielectric metasurface polarimeter. ACS Photonics 9, 3245-3252 (2022). doi: 10.1021/acsphotonics.2c00395
[22] Zheng, C. L. et al. Terahertz metasurface polarization detection employing vortex pattern recognition. Photonics Research 11, 2256-2263 (2023). doi: 10.1364/PRJ.506746
[23] Zheng, C. L. et al. Full-Stokes metasurface polarimetry requiring only a single measurement. Photonics Research 12, 514-521 (2024). doi: 10.1364/PRJ.512204
[24] Guo, J. Y. et al. Polarization multiplexing for double images display. Opto-Electronic Advances 2, 180029 (2019).
[25] Liu, M. Z. et al. Multifunctional metasurfaces enabled by simultaneous and independent control of phase and amplitude for orthogonal polarization states. Light: Science & Applications 10 , 107 (2021).
[26] Liu, S. et al. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves. Light: Science & Applications 5 , e16076 (2016).
[27] Wang, M. et al. Hybrid digital coding metasurface for independent control of propagating surface and spatial waves. Advanced Optical Materials 7, 1900478 (2019). doi: 10.1002/adom.201900478
[28] Chen, K. et al. A reconfigurable active Huygens’ metalens. Advanced Materials 29, 1606422 (2017). doi: 10.1002/adma.201606422
[29] Feng, R. et al. Versatile metasurface platform for electromagnetic wave tailoring. Photonics Research 9, 1650-1659 (2021). doi: 10.1364/PRJ.428853
[30] Hu, Q. et al. An intelligent programmable omni-metasurface. Laser & Photonics Reviews 16, 2100718 (2022).
[31] Huang, C. et al. Reconfigurable metasurface for multifunctional control of electromagnetic waves. Advanced Optical Materials 5, 1700485 (2017). doi: 10.1002/adom.201700485
[32] Fu, Y. H. et al. A micromachined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators. Advanced Functional Materials 21, 3589-3594 (2011). doi: 10.1002/adfm.201101087
[33] Ren, M. X. et al. Reconfigurable metasurfaces that enable light polarization control by light. Light: Science & Applications 6 , e16254 (2017).
[34] Chen, L. et al. Dual-polarization programmable metasurface modulator for near-field information encoding and transmission. Photonics Research 9, 116-124 (2021). doi: 10.1364/PRJ.412052
[35] Bao, L. et al. Programmable reflection-transmission shared-aperture metasurface for real-time control of electromagnetic waves in full space. Advanced Science 8, 2100149 (2021). doi: 10.1002/advs.202100149
[36] Yang, H. H. et al. A programmable metasurface with dynamic polarization, scattering and focusing control. Scientific Reports 6, 35692 (2016). doi: 10.1038/srep35692
[37] Dai, J. Y. et al. Wireless communications through a simplified architecture based on time-domain digital coding metasurface. Advanced Materials Technologies 4, 1900044 (2019). doi: 10.1002/admt.201900044
[38] Zhang, L. et al. A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces. Nature Electronics 4, 218-227 (2021). doi: 10.1038/s41928-021-00554-4
[39] Dai, J. Y. et al. Realization of multi-modulation schemes for wireless communication by time-domain digital coding metasurface. IEEE Transactions on Antennas and Propagation 68, 1618-1627 (2020). doi: 10.1109/TAP.2019.2952460
[40] Liu, C. et al. Intelligent coding metasurface holograms by physics-assisted unsupervised generative adversarial network. Photonics Research 9, B159-B167 (2021). doi: 10.1364/PRJ.416287
[41] Li, X. et al. Code division multiplexing inspired dynamic metasurface holography. Advanced Functional Materials 31, 2103326 (2021). doi: 10.1002/adfm.202103326
[42] Zhang, L. et al. Spin-controlled multiple pencil beams and vortex beams with different polarizations generated by pancharatnam-berry coding metasurfaces. ACS Applied Materials & Interfaces 9, 36447-36455 (2017).
[43] Liu, X. B. et al. Digital coding metasurface for multi-beam and multi-mode OAM in full-space. Results in Physics 51, 106638 (2023). doi: 10.1016/j.rinp.2023.106638
[44] Li, Y. X. et al. Reconfigurable phase-modulated metasurfaces via rotating adjustable resistor. Results in Physics 47, 106378 (2023). doi: 10.1016/j.rinp.2023.106378
[45] Zhang, X. G. et al. Light-controllable time-domain digital coding metasurfaces. Advanced Photonics 4, 025001 (2022).
[46] Chen, L. et al. Light-controllable metasurface for microwave wavefront manipulation. Optics Express 28, 18742-187749 (2020). doi: 10.1364/OE.396802
[47] Li, Y. X. et al. Simplistic framework of single-pixel-programmable metasurfaces integrated with a capsuled LED array. Photonics Research 12, 884-894 (2024). doi: 10.1364/PRJ.506044
[48] Li, L. L. et al. Intelligent metasurfaces: control, communication and computing. eLight 2, 7 (2022). doi: 10.1186/s43593-022-00013-3