[1] Rolland, J. P. et al. Freeform optics for imaging. Optica 8, 161-176 (2021). doi: 10.1364/OPTICA.413762
[2] Fang, F. Z. et al. Manufacturing and measurement of freeform optics. Cirp Annals 62, 823-846 (2013). doi: 10.1016/j.cirp.2013.05.003
[3] Garmire, E. Nonlinear optics in daily life. Optics Express 21, 30532-30544 (2013). doi: 10.1364/OE.21.030532
[4] Kumar, S., Tong, Z. & Jiang, X. Q. Advances in the design and manufacturing of novel freeform optics. International Journal of Extreme Manufacturing 4, 032004 (2022). doi: 10.1088/2631-7990/ac7617
[5] Ren, Z. H. et al. Intelligent evaluation for lens optical performance based on machine vision. Optics Express 30, 26251-26265 (2022). doi: 10.1364/OE.463148
[6] Walker, D. et al. Bridging the Divide Between Iterative Optical Polishing and Automation. Nanomanufacturing and Metrology 6, 26 (2023). doi: 10.1007/s41871-023-00197-3
[7] Kordonski, W. I. & Jacobs, S. D. Magnetorheological finishing. International Journal of Modern Physics B 10, 2837-2848 (1996). doi: 10.1142/S0217979296001288
[8] Bai, Y. et al. Material removal model of magnetorheological finishing based on dense granular flow theory. Light: Advanced Manufacturing 3, 41 (2022).
[9] Kumar, M., Das, M. & Yu, N. Surface Roughness Simulation During Rotational-Magnetorheological Finishing of Poppet Valve Profiles. Nanomanufacturing and Metrology 5, 259-273 (2022). doi: 10.1007/s41871-022-00144-8
[10] Walker, D. D. et al. The 'Precessions' tooling for polishing and figuring flat, spherical and aspheric surfaces. Optics Express 11, 958-964 (2003). doi: 10.1364/OE.11.000958
[11] Beaucamp, A., Katsuura, T. & Kawara, Z. A novel ultrasonic cavitation assisted fluid jet polishing system. Cirp Annals 66, 301-304 (2017). doi: 10.1016/j.cirp.2017.04.083
[12] Wang, C. J. et al. Maskless fluid jet polishing of optical structured surfaces. Precision Engineering 73, 270-283 (2022). doi: 10.1016/j.precisioneng.2021.09.010
[13] Su, X. et al. Simulation and experimental study on form-preserving capability of bonnet polishing for complex freeform surfaces. Precision engineering 60, 54-62 (2019). doi: 10.1016/j.precisioneng.2019.07.010
[14] Pan, R. et al. Control techniques of bonnet polishing for free-form optical lenses with precession. Journal of Mechanical Engineering 49, 186-193 (2013).
[15] Chkhalo, N. I. et al. Ion-beam polishing of fused silica substrates for imaging soft x-ray and extreme ultraviolet optics. Applied Optics 55, 1249-1256 (2016). doi: 10.1364/AO.55.001249
[16] Gao, J. et al. Fundamentals of atomic and close-to-atomic scale manufacturing: a review. International Journal of Extreme Manufacturing 4, 012001 (2022). doi: 10.1088/2631-7990/ac3bb2
[17] Cook, L. M. Chemical Processes in Glass Polishing. Journal of Non-Crystalline Solids 120, 152-171 (1990). doi: 10.1016/0022-3093(90)90200-6
[18] Wang, T. Y. et al. Universal dwell time optimization for deterministic optics fabrication. Optics Express 29, 38737-38757 (2021). doi: 10.1364/OE.443346
[19] Guo, Y. F. et al. A novel high efficiency magnetorheological polishing process excited by Halbach array magnetic field. Precision Engineering 74, 175-185 (2022). doi: 10.1016/j.precisioneng.2021.11.011
[20] Amir, M. et al. Development of magnetic nanoparticle based nanoabrasives for magnetorheological finishing process and all their variants. Ceramics International 49, 6254-6261 (2023). doi: 10.1016/j.ceramint.2022.11.033
[21] Baghel, P. K. et al. Ultrasonic vibration-assisted magnetorheological hybrid finishing process for glass optics. The International Journal of Advanced Manufacturing Technology 125, 2265-2276 (2023). doi: 10.1007/s00170-023-10819-1
[22] Liang, Y. D. et al. Large size optical glass lens polishing based on ultrasonic vibration. Ceramics International 49, 14377-14388 (2023). doi: 10.1016/j.ceramint.2023.01.026
[23] Xu, G. H. et al. Atomic-scale surface of fused silica induced by chemical mechanical polishing with controlled size spherical ceria abrasives. Journal of Manufacturing Processes 85, 783-792 (2023). doi: 10.1016/j.jmapro.2022.12.008
[24] Tan, Z. Q. et al. Ultra-smooth surface with 0.4 Å roughness on fused silica. Ceramics International 49, 7245-7251 (2023).
[25] Peng, X. C. et al. Laser-based defect characterization and removal process for manufacturing fused silica optic with high ultraviolet laser damage threshold. Light: Advanced Manufacturing 4, 21 (2023).
[26] Sofronas, A. & Taraman, S. Model Development and Optimization of Vibratory Finishing Process. International Journal of Production Research 17, 23-31 (1979). doi: 10.1080/00207547908919592
[27] Wang, S., Timsit, R. S. & Spelt, J. K. Experimental investigation of vibratory finishing of aluminum. Wear 243, 147-156 (2000). doi: 10.1016/S0043-1648(00)00437-3
[28] Boschetto, A. & Bottini, L. Roughness prediction in coupled operations of fused deposition modeling and barrel finishing. Journal of Materials Processing Technology 219, 181-192 (2015). doi: 10.1016/j.jmatprotec.2014.12.021
[29] Kitajima, K. et al. Deburring characteristics by utilizing dry centrifugal barrel finishing. in Abrasive Technology: Current Development and Applications I (eds Wang, J. , Scott, W. J. & Zhang, L. C. ) (River Edge: International Conference on Abrasive Technology, 1999), 283-288.
[30] Yang, S. Q. & Li, W. H. Surface finishing theory and new technology 1-64 (Berlin, Heidelberg: Springer, 2018), 1-64.
[31] Li, W. H. et al. Theoretical and simulation analysis of abrasive particles in centrifugal barrel finishing: Kinematics mechanism and distribution characteristics. Powder Technology 318, 518-527 (2017). doi: 10.1016/j.powtec.2017.06.033
[32] Hao, Y. P. et al. Vibratory finishing for the cavity of aero-engine integral casting casing: mechanism analysis and performance evaluation. The International Journal of Advanced Manufacturing Technology 125, 713-729 (2023). doi: 10.1007/s00170-022-10728-9
[33] Lv, D. J. et al. Analysis of abrasives on cutting edge preparation by drag finishing. The International Journal of Advanced Manufacturing Technology 119, 3583-3594 (2022). doi: 10.1007/s00170-021-08623-w
[34] Na, W. et al. Experiment and simulation analysis on the mechanism of the spindle barrel finishing. The International Journal of Advanced Manufacturing Technology 109, 57-74 (2020). doi: 10.1007/s00170-020-05609-y
[35] Barletta, M. et al. Drag finishing of sensitive workpieces with fluidized abrasives. Journal of Manufacturing Processes 16, 494-502 (2014). doi: 10.1016/j.jmapro.2014.06.003
[36] Umehara, N. et al. A new apparatus for finishing large size/large batch silicon nitride(Si3N4) balls for hybrid bearing applications by magnetic float polishing (MFP). International Journal of Machine Tools and Manufacture 46, 151-169 (2006). doi: 10.1016/j.ijmachtools.2005.04.015
[37] Li, X. N. et al. A novel rotary barrel finishing approach for high-performance bearing ring surfaces finishing simultaneously via floating clamp. The International Journal of Advanced Manufacturing Technology (2022)https://doi.org/10.1007/s00170-022-10377-y. doi: 10.1007/s00170-022-10377-y
[38] Wang, C. J. et al. Magnetic field-assisted batch superfinishing on thin-walled components. International Journal of Mechanical Sciences 223, 107279 (2022). doi: 10.1016/j.ijmecsci.2022.107279
[39] Wang, C. J. et al. A novel magnetic field-assisted mass polishing of freeform surfaces. Journal of Materials Processing Technology 279, 116552 (2020). doi: 10.1016/j.jmatprotec.2019.116552
[40] Wang, C. J. et al. Shape-adaptive magnetic field-assisted batch polishing of three-dimensional surfaces. Precision Engineering 76, 261-283 (2022). doi: 10.1016/j.precisioneng.2022.04.003