[1] The Health of Photonics: How light-based technologies are solving industry challenges, and how they can be harnessed to impact future economic growth. Institute of Physics. 2018.
[2] Kostovski, G., Stoddart, P. R. & Mitchell, A. The optical fiber tip: an inherently light-coupled microscopic platform for micro- and nanotechnologies. Advanced Materials 26, 3798-3820 (2014). doi: 10.1002/adma.201304605
[3] Vaiano, P. et al. Lab on fiber technology for biological sensing applications. Laser & Photonics Reviews 10, 922-961 (2016).
[4] Xu, Y. et al. Optical refractive index sensors with plasmonic and photonic structures: promising and inconvenient truth. Advanced Optical Materials 7, 1801433 (2019). doi: 10.1002/adom.201801433
[5] Xiong, Y. F. & Xu, F. Multifunctional integration on optical fiber tips: challenges and opportunities. Advanced Photonics 2, 064001 (2020).
[6] Li, Y. C. et al. Optical fiber technologies for nanomanipulation and biodetection: a review. Journal of Lightwave Technology 39, 251-262 (2021). doi: 10.1109/JLT.2020.3023456
[7] Jia, P. P. et al. Quasiperiodic nanohole arrays on optical fibers as plasmonic sensors: fabrication and sensitivity determination. ACS Sensors 1, 1078-1083 (2016). doi: 10.1021/acssensors.6b00436
[8] Principe, M. et al. Optical fiber meta-tips. Light:Science & Applications 6, e16226 (2017).
[9] Ansari, R. et al. All-optical forward-viewing photoacoustic probe for high-resolution 3D endoscopy. Light:Science & Applications 7, 75 (2018).
[10] Yang, T. et al. Surface plasmon cavities on optical fiber end-facets for biomolecule and ultrasound detection. Optics & Laser Technology 101, 468-478 (2018).
[11] Zhou, X. et al. Ultrasound detection at fiber end-facets with surface plasmon resonance cavities. Optics Letters 43, 775-778 (2018). doi: 10.1364/OL.43.000775
[12] Liu, Y. et al. Simple and low-cost plasmonic fiber-optic probe as sers and biosensing platform. Advanced Optical Materials 7, 1900337 (2019). doi: 10.1002/adom.201900337
[13] Kim, J. A. et al. Fiber-optic SERS probes fabricated using two-photon polymerization for rapid detection of bacteria. Advanced Optical Materials 8, 1901934 (2020). doi: 10.1002/adom.201901934
[14] Feng, S. F. et al. A miniaturized sensor consisting of concentric metallic nanorings on the end facet of an optical fiber. Small 8, 1937-1944 (2012). doi: 10.1002/smll.201102290
[15] He, X. L. et al. Plasmonic crystal cavity on single-mode optical fiber end facet for label-free biosensing. Applied Physics Letters 108, 231105 (2016). doi: 10.1063/1.4953413
[16] Lei, Z. Y. et al. Second-order distributed-feedback surface plasmon resonator for single-mode fiber end-facet biosensing. Applied Physics Letters 110, 171107 (2017). doi: 10.1063/1.4982625
[17] Liang, Y. Z. et al. Subradiant dipolar interactions in plasmonic nanoring resonator array for integrated label-free biosensing. ACS Sensors 2, 1796-1804 (2017). doi: 10.1021/acssensors.7b00607
[18] Consales, M. et al. Metasurface-enhanced lab-on-fiber biosensors. Laser & Photonics Reviews 14, 2000180 (2020).
[19] Suleman, H. et al. Plasmonic heptamer-arranged nanoholes in a gold film on the end-facet of a photonic crystal fiber. Optics Letters 46, 4482-4485 (2021). doi: 10.1364/OL.426960
[20] https://www.cytivalifesciences.com/en/us/solutions/protein-research/interaction-analysis-with-biacore-surface-plasmon-resonance-spr.
[21] Scaravilli, M. et al. Excitation of Bloch surface waves on an optical fiber tip. Advanced Optical Materials 6, 1800477 (2018). doi: 10.1002/adom.201800477
[22] Smythe, E. J. et al. A technique to transfer metallic nanoscale patterns to small and non-planar surfaces. ACS Nano 3, 59-65 (2009). doi: 10.1021/nn800720r
[23] Lipomi, D. J. et al. Patterning the tips of optical fibers with metallic nanostructures using nanoskiving. Nano Letters 11, 632-636 (2011). doi: 10.1021/nl103730g
[24] Jia, P. P. & Yang, J. A plasmonic optical fiber patterned by template transfer as a high-performance flexible nanoprobe for real-time biosensing. Nanoscale 6, 8836-8843 (2014). doi: 10.1039/C4NR01411A
[25] Wang, Y., Liu, F. F. & Zhang, X. P. Flexible transfer of plasmonic photonic structures onto fiber tips for sensor applications in liquids. Nanoscale 10, 16193-16200 (2018). doi: 10.1039/C8NR05871G
[26] Kim, H. M. et al. Localized surface plasmon resonance biosensor using nanopatterned gold particles on the surface of an optical fiber. Sensors and Actuators B:Chemical 280, 183-191 (2019). doi: 10.1016/j.snb.2018.10.059
[27] Liu, J. Y. et al. Off-axis microsphere photolithography patterned nanohole array and other structures on an optical fiber tip for glucose sensing. RSC Advances 11, 25912-25920 (2021). doi: 10.1039/D1RA02652F
[28] Managò, S. et al. Tailoring lab-on-fiber SERS optrodes towards biological targets of different sizes. Sensors and Actuators B:Chemical 339, 129321 (2021). doi: 10.1016/j.snb.2020.129321
[29] Luk'yanchuk, B. et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nature Materials 9, 707-715 (2010). doi: 10.1038/nmat2810
[30] Nagpal, P. et al. Ultrasmooth patterned metals for plasmonics and metamaterials. Science 325, 594-597 (2009). doi: 10.1126/science.1174655
[31] Slabý, J. & Homola, J. Performance of label-free optical biosensors: what is figure of merit (not) telling us. Biosensors and Bioelectronics 212, 114426 (2022). doi: 10.1016/j.bios.2022.114426
[32] Yang, T. et al. How to convincingly measure low concentration samples with optical label-free biosensors. Sensors and Actuators B:Chemical 306, 127568 (2020). doi: 10.1016/j.snb.2019.127568
[33] Dahlin, A. Biochemical sensing with nanoplasmonic architectures: we know how but do we know why. Annual Review of Analytical Chemistry 14, 281-297 (2021). doi: 10.1146/annurev-anchem-091420-090751
[34] Zhi, Y. Y. et al. Single nanoparticle detection using optical microcavities. Advanced Materials 29, 1604920 (2017). doi: 10.1002/adma.201604920
[35] Wang, J. W. et al. Silicon-based integrated label-free optofluidic biosensors: latest advances and roadmap. Advanced Materials Technologies 5, 1901138 (2020). doi: 10.1002/admt.201901138