[1] |
Rosen, J. et al. Recent advances in self-interference incoherent digital holography. Advances in Optics and Photonics 11, 1-66 (2019). doi: 10.1364/AOP.11.000001 |
[2] |
Dainty, J. C. Laser Speckle and Related Phenomena. (New York: Springer-Verlag, 1984). |
[3] |
Singh, A. K. et al. Scatter-plate microscope for lensless microscopy with diffraction limited resolution. Scientific Reports 7, 10687 (2017). doi: 10.1038/s41598-017-10767-3 |
[4] |
Antipa, N. et al. DiffuserCam: lensless single-exposure 3D imaging. Optica 5, 1-9 (2018). doi: 10.1364/OPTICA.5.000001 |
[5] |
Lee, K. & Park, Y. Exploiting the speckle-correlation scattering matrix for a compact reference-free holographic image sensor. Nature Communications 7, 13359 (2016). doi: 10.1038/ncomms13359 |
[6] |
Rosen, J. et al. Review of 3D imaging by coded aperture correlation holography (COACH). Applied Sciences 9, 605 (2019). doi: 10.3390/app9030605 |
[7] |
Horner, J. L. & Gianino, P. D. Phase-only matched filtering. Applied Optics 23, 812-816 (1984). doi: 10.1364/AO.23.000812 |
[8] |
Rai, M. R., Vijayakumar, A. & Rosen, J. Non-linear adaptive three-dimensional imaging with interferenceless coded aperture correlation holography (I-COACH). Optics Express 26, 18143-18154 (2018). doi: 10.1364/OE.26.018143 |
[9] |
Gerchberg, R. W. & Saxton, W. O. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237-250 (1972). |
[10] |
Ogura, Y., Aino, M. & Tanida, J. Design and demonstration of fan-out elements generating an array of subdiffraction spots. Optics Express 22, 25196-25207 (2014). doi: 10.1364/OE.22.025196 |
[11] |
Rai, M. R. et al. Resolution enhancement in nonlinear interferenceless COACH with point response of subdiffraction limit patterns. Optics Express 27, 391-403 (2019). doi: 10.1364/OE.27.000391 |
[12] |
Choi, Y. et al. Overcoming the diffraction limit using multiple light scattering in a highly disordered medium. Physical Review Letters 107, 023902 (2011). doi: 10.1103/PhysRevLett.107.023902 |
[13] |
Kashter, Y., Vijayakumar, A. & Rosen, J. Resolving images by blurring: superresolution method with a scattering mask between the observed objects and the hologram recorder. Optica 4, 932-939 (2017). doi: 10.1364/OPTICA.4.000932 |
[14] |
Rosen, J. & Brooker, G. Digital spatially incoherent Fresnel holography. Optics Letters 32, 912-914 (2007). doi: 10.1364/OL.32.000912 |
[15] |
Rai, M. R., Vijayakumar, A. & Rosen, J. Superresolution beyond the diffraction limit using phase spatial light modulator between incoherently illuminated objects and the entrance of an imaging system. Optics Letters 44, 1572-1575 (2019). doi: 10.1364/OL.44.001572 |
[16] |
Pullman, J. M. et al. Visualization of podocyte substructure with structured illumination microscopy (SIM): a new approach to nephrotic disease. Biomedical Optics Express 7, 302-311 (2016). doi: 10.1364/BOE.7.000302 |
[17] |
Rey, J. J. et al. A deployable, annular, 30m telescope, space-based observatory. Proceedings of SPIE 9143, Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave. Montréal: SPIE, 2014. |
[18] |
Bulbul, A., Vijayakumar, A. & Rosen, J. Partial aperture imaging by systems with annular phase coded masks. Optics Express 25, 33315-33329 (2017). doi: 10.1364/OE.25.033315 |
[19] |
Bulbul, A., Vijayakumar, A. & Rosen, J. Superresolution far-field imaging by coded phase reflectors distributed only along the boundary of synthetic apertures. Optica 5, 1607-1616 (2018). doi: 10.1364/OPTICA.5.001607 |
[20] |
Tian, N., Fu, L. & Gu, M. Resolution and contrast enhancement of subtractive second harmonic generation microscopy with a circularly polarized vortex beam. Scientific Reports 5, 13580 (2015). doi: 10.1038/srep13580 |
[21] |
Bouchal, P. & Bouchal, Z. Selective edge enhancement in three-dimensional vortex imaging with incoherent light. Optics Letters 37, 2949-2951 (2012). doi: 10.1364/OL.37.002949 |
[22] |
Anand, V. et al. Edge and contrast enhancement using spatially incoherent correlation holography techniques. Photonics 8, 224 (2021). doi: 10.3390/photonics8060224 |
[23] |
Fenimore, E. E. & Cannon, T. M. Coded aperture imaging with uniformly redundant arrays. Applied Optics 17, 337-347 (1978). doi: 10.1364/AO.17.000337 |
[24] |
Wagadarikar, A. et al. Single disperser design for coded aperture snapshot spectral imaging. Applied Optics 47, B44-B51 (2008). doi: 10.1364/AO.47.000B44 |
[25] |
Galvis, L. et al. Coded aperture design in compressive spectral imaging based on side information. Applied Optics 56, 6332-6340 (2017). doi: 10.1364/AO.56.006332 |
[26] |
Ghosh, G. Sellmeier coefficients and dispersion of thermo-optic coefficients for some optical glasses. Applied Optics 36, 1540-1546 (1997). doi: 10.1364/AO.36.001540 |
[27] |
Anand, V. et al. White light three-dimensional imaging using a quasi-random lens. Optics Express 29, 15551-15563 (2021). doi: 10.1364/OE.426021 |
[28] |
Vijayakumar, A. & Rosen, J. Spectrum and space resolved 4D imaging by coded aperture correlation holography (COACH) with diffractive objective lens. Optics Letters 42, 947-950 (2017). doi: 10.1364/OL.42.000947 |
[29] |
Rai, M. R., Vijayakumar, A. & Rosen, J. Extending the field of view by a scattering window in an I-COACH system. Optics Letters 43, 1043-1046 (2018). doi: 10.1364/OL.43.001043 |
[30] |
Hai, N. & Rosen, J. Coded aperture correlation holographic microscope for single-shot quantitative phase and amplitude imaging with extended field of view. Optics Express 28, 27372-27386 (2020). doi: 10.1364/OE.401146 |
[31] |
Vijayakumar, A. et al. Implementation of a speckle-correlation-based optical lever with extended dynamic range. Applied Optics 58, 5982-5988 (2019). doi: 10.1364/AO.58.005982 |
[32] |
Vijayakumar, A., Bhattacharya, S. & Rosen, J. Spatial multiplexing technique for improving dynamic range of speckle correlation based optical lever. Scientific Reports 9, 16035 (2019). doi: 10.1038/s41598-019-52394-0 |
[33] |
Anand, V. et al. Single shot multispectral multidimensional imaging using chaotic waves. Scientific Reports 10, 13902 (2020). doi: 10.1038/s41598-020-70849-7 |
[34] |
Rai, M. R. & Rosen, J. Noise suppression by controlling the sparsity of the point spread function in interferenceless coded aperture correlation holography (I-COACH). Optics Express 27, 24311-24323 (2019). doi: 10.1364/OE.27.024311 |
[35] |
Bulbul, A. & Rosen, J. Partial aperture imaging system based on sparse point spread holograms and nonlinear cross-correlations. Scientific Reports 10, 21983 (2020). doi: 10.1038/s41598-020-77912-3 |
[36] |
Hai, N. & Rosen, J. Interferenceless and motionless method for recording digital holograms of coherently illuminated 3D objects by coded aperture correlation holography system. Optics Express 27, 24324-24339 (2019). doi: 10.1364/OE.27.024324 |
[37] |
Correa, C. V., Arguello, H. & Arce, G. R. Spatiotemporal blue noise coded aperture design for multi-shot compressive spectral imaging. Journal of the Optical Society of America A 33, 2312-2322 (2016). doi: 10.1364/JOSAA.33.002312 |
[38] |
Lau, D. L., Ulichney, R. & Arce, G. R. Blue and green noise halftoning models. IEEE Signal Processing Magazine 20, 28-38 (2003). doi: 10.1109/MSP.2003.1215229 |
[39] |
Vijayakumar, A. & Bhattacharya, S. Design and Fabrication of Diffractive Optical Elements with MATLAB. (Bellingham: SPIE Press, 2017), 250. |
[40] |
Anand, V. et al. Spatio-spectral-temporal imaging of fast transient phenomena using a random array of pinholes. Advanced Photonics Research 2, 2000032 (2021). doi: 10.1002/adpr.202000032 |
[41] |
Gottesman, S. R. & Fenimore, E. E. New family of binary arrays for coded aperture imaging. Applied Optics 28, 4344-4352 (1989). doi: 10.1364/AO.28.004344 |
[42] |
Anand, V. et al. Single-shot mid-infrared incoherent holography using Lucy-Richardson-Rosen algorithm. Opto-Electronic Science 1, 210006 (2022). doi: 10.29026/oes.2022.210006 |
[43] |
Arce, G. R. et al. Compressive coded aperture spectral imaging: an introduction. IEEE Signal Processing Magazine 31, 105-115 (2014). doi: 10.1109/MSP.2013.2278763 |
[44] |
Bertolotti, J. et al. Non-invasive imaging through opaque scattering layers. Nature 491, 232-234 (2012). doi: 10.1038/nature11578 |
[45] |
Katz, O. et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nature Photonics 8, 784-790 (2014). doi: 10.1038/nphoton.2014.189 |
[46] |
Rueda-Chacon, H. et al. Snapshot compressive ToF+spectral imaging via optimized color-coded apertures. IEEE Transactions on Pattern Analysis and Machine Intelligence 42, 2346-2360 (2020). doi: 10.1109/TPAMI.2019.2912961 |
[47] |
Mukherjee, S., Vijayakumar, A. & Rosen, J. Spatial light modulator aided noninvasive imaging through scattering layers. Scientific Reports 9, 17670 (2019). doi: 10.1038/s41598-019-54048-7 |
[48] |
Ng, S. H. et al. Invasive and non-invasive observation of occluded fast transient events: computational tools. Photonics 8, 253 (2021). doi: 10.3390/photonics8070253 |