[1] Balasubramani, V et al. Roadmap on digital holography-based quantitative phase imaging. Journal of Imaging 7, 252 (2021). doi: 10.3390/jimaging7120252
[2] Lohmann, A. W. et al. Space-bandwidth product of optical signals and systems. Journal of the Optical Society of America A 13, 470-473 (1996). doi: 10.1364/JOSAA.13.000470
[3] Huggins, E. Introduction to Fourier optics. The Physics Teacher 45, 364-368 (2007). doi: 10.1119/1.2768695
[4] Burton, G. J. & Moorhead, I. R. Color and spatial structure in natural scenes. Applied Optics 26, 157-170 (1987). doi: 10.1364/AO.26.000157
[5] ISO/IEC JTC1/SC29/WG1. Final Call for Proposals on JPEG Pleno Holography. 2020 at https://ds.jpeg.org/documents/jpegpleno/wg1n91020-REQ-Final_Call_for_Proposals_ on_JPEG_Pleno_Holography.pdf.
[6] Park, Y., Depeursinge, C. & Popescu, G. Quantitative phase imaging in biomedicine. Nature Photonics 12, 578-589 (2018). doi: 10.1038/s41566-018-0253-x
[7] Marquet, P. et al. Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Optics Letters 30, 468-470 (2005). doi: 10.1364/OL.30.000468
[8] Kemper, B. & Von Bally, G. Digital holographic microscopy for live cell applications and technical inspection. Applied Optics 47, A52-A61 (2008). doi: 10.1364/AO.47.000A52
[9] Balasubramani, V. et al. Holographic tomography: techniques and biomedical applications. Applied Optics 60, B65-B80 (2021). doi: 10.1364/AO.416902
[10] Nanolive, S. A. Nanolive. https://nanolive.ch.
[11] Tomocube Inc. Tomocube. http://www.tomocube.com/.
[12] Kim, M. K. Digital holographic microscopy. in Digital Holographic Microscopy (ed Kim, M. K.). (New York: Springer, 2011), 149–190.
[13] Rappaz, B. et al. Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy. Journal of Biomedical Optics 14, 034049 (2009). doi: 10.1117/1.3147385
[14] Kastl, L. et al. Quantitative phase imaging for cell culture quality control. Cytometry Part A 91, 470-481 (2017). doi: 10.1002/cyto.a.23082
[15] Rubin, M. et al. TOP-GAN: Stain-free cancer cell classification using deep learning with a small training set. Medical Image Analysis 57, 176-185 (2019). doi: 10.1016/j.media.2019.06.014
[16] Stępień, P., Korbuszewski, D. & Kujawińska, M. Digital holographic microscopy with extended field of view using tool for generic image stitching. ETRI Journal 41, 73-83 (2019). doi: 10.4218/etrij.2018-0499
[17] Croft, L. V. et al. Digital holographic imaging as a method for quantitative, live cell imaging of drug response to novel targeted cancer therapies. in Theranostics (eds Batra, J. & Srinivasan. S.). (New York: Springer, 2019), 171–183.
[18] Kühn, J. et al. Label-free cytotoxicity screening assay by digital holographic microscopy. Assay and Drug Development Technologies 11, 101-107 (2013). doi: 10.1089/adt.2012.476
[19] Jin, D. et al. Tomographic phase microscopy: principles and applications in bioimaging. Journal of the Optical Society of America B 34, B64-B77 (2017). doi: 10.1364/JOSAB.34.000B64
[20] Hsieh, J. & Flohr, T. Computed tomography recent history and future perspectives. Journal of Medical Imaging 8, 052109 (2021).
[21] Kuś, A. et al. Holographic tomography: hardware and software solutions for 3D quantitative biomedical imaging (Invited paper). ETRI Journal 41, 61-72 (2019). doi: 10.4218/etrij.2018-0505
[22] Kim, K. et al. Optical diffraction tomography techniques for the study of cell pathophysiology. Journal of Biomedical Photonics & Engineering 2, 020201 (2016).
[23] Hugonnet, H. et al. Multiscale label-free volumetric holographic histopathology of thick-tissue slides with subcellular resolution. Advanced Photonics, 3, 026004 (2021).
[24] van Rooij, J. & Kalkman, J. Polarization contrast optical diffraction tomography. Biomedical Optics Express 11, 2109-2121 (2020). doi: 10.1364/BOE.381992
[25] Karray, M., Slangen, P. & Picart, P. Comparison between digital Fresnel holography and digital imageplane holography: the role of the imaging aperture. Experimental Mechanics 52, 1275-1286 (2012). doi: 10.1007/s11340-012-9604-6
[26] Sánchez-Ortiga, E. et al. Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit. Applied Optics 53, 2058-2066 (2014). doi: 10.1364/AO.53.002058
[27] Takeda, M., Ina, H. & Kobayashi, S. Fouriertransform method of fringe-pattern analysis for computer-based topography and interferometry. Journal of the Optical Society of America A 72, 156-160 (1982). doi: 10.1364/JOSA.72.000156
[28] Cuche, E., Marquet, P. & Depeursinge, C. Spatial filtering for zero-order and twin-image elimination in digital off-axis holography. Applied Optics 39, 4070-4075 (2000). doi: 10.1364/AO.39.004070
[29] Darakis, E. et al. Microparticle characterization using digital holography. Chemical Engineering Science 65, 1037-1044 (2010). doi: 10.1016/j.ces.2009.09.057
[30] Yamaguchi, I. Phase-shifting digital holography. in Digital Holography and Three-Dimensional Display (ed Poon, T. C.). (Boston: Springer, 2006), 145–171.
[31] Stępień, P. et al. Spatial bandwidth-optimized compression of image plane off-axis holograms with image and video codecs. Optics Express 28, 27873-27892 (2020). doi: 10.1364/OE.398598
[32] Hoffman, D. M. et al. Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. Journal of Vision 8, 33 (2008).
[33] Kim, S. C. et al. Holographic full-color 3D display system using color-LCoS spatial light modulator. Proceedings of SPIE 5742, Practical Holography XIX: Materials and Applications. San Jose: SPIE (2005), 223–233.
[34] Takaki, Y. & Okada, N. Hologram generation by horizontal scanning of a high-speed spatial light modulator. Applied Optics 48, 3255-3260 (2009). doi: 10.1364/AO.48.003255
[35] Inoue, T. & Takaki, Y. Table screen 360-degree holographic display using circular viewing-zone scanning. Optics Express 23, 6533-6542 (2015). doi: 10.1364/OE.23.006533
[36] Kollin, J. S., Benton, S. A. & Jepsen, M. L. Real-time display of 3-D computed holograms by scanning the image of an Acousto-optic modulator. Proceedings of SPIE 1136, Holographic Optics Ⅱ: Principles and Applications. Paris: SPIE (1989), 178–185.
[37] Maimone, A., Georgiou, A. & Kollin, J. S. Holographic near-eye displays for virtual and augmented reality. ACM Transactions on Graphics 36, 85 (2017).
[38] Yeom, H. J. et al. 3D holographic head mounted display using holographic optical elements with astigmatism aberration compensation. Optics Express 23, 32025-32034 (2015). doi: 10.1364/OE.23.032025
[39] Zaperty, W., Kozacki, T. & Kujawińska, M. MultiSLM color holographic 3D display based on RGB spatial filter. Journal of Display Technology 12, 1724-1731 (2016).
[40] Yoshikawa, H. & Yamaguchi, T. Review of holographic printers for computer-generated holograms. IEEE Transactions on Industrial Informatics 12, 1584-1589 (2016). doi: 10.1109/TII.2015.2475722
[41] Yamamoto, K. et al. Hologram printing for nextgeneration holographic display. Proceedings of SPIE 10557, Ultra-High-Definition Imaging Systems. San Francisco: SPIE, 2018.
[42] Lucente, M. E. Interactive computation of holograms using a look-up table. Journal of Electronic Imaging 2, 28-34 (1993). doi: 10.1117/12.133376
[43] Kim, S. C. & Kim E. S. Effective generation of digital holograms of three-dimensional objects using a novel look-up table method. Applied Optics 47, D55-D62 (2008). doi: 10.1364/AO.47.000D55
[44] Blinder, D. et al. Signal processing challenges for digital holographic video display systems. Signal Processing: Image Communication 70, 114-130 (2019). doi: 10.1016/j.image.2018.09.014
[45] Cai, Q. et al. Lossy and Lossless Intra Coding Performance Evaluation: HEVC, H.264/AVC, JPEG 2000 and JPEG LS. Proceedings of The 2012 Asia Pacific Signal and Information Processing Association Annual Summit and Conference. Hollywood: IEEE, 2012.
[46] Weinberger, M. J., Seroussi, G. & Sapiro, G. The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS. IEEE Transactions on Image Processing 9, 1309-1324 (2000). doi: 10.1109/83.855427
[47] Hampel, H. et al. Technical features of the JBIG standard for progressive bi-level image compression. Signal Processing: Image Communication 4, 103-111 (1992). doi: 10.1016/0923-5965(92)90017-A
[48] Ono, F. et al. JBIG2-the ultimate bi-level image coding standard.Proceedings 2000 International Conference on Image Processing. Vancouver: IEEE, 140-143 (2000).
[49] Alakuijala, J. et al. JPEG XL next-generation image compression architecture and coding tools. Proceedings of SPIE 11137, Applications of Digital Image Processing XLⅡ. San Diego: SPIE, 2019, 112-124.
[50] Wallace, G. K. The JPEG still picture compression standard. IEEE Transactions on Consumer Electronics 38, xviii-xxxiv (1992).
[51] Hannuksela, M. M., Lainema, J. & Vadakital, V. M. The High Efficiency Image File Format Standard[Standards in a Nutshell]. IEEE Signal Processing Magazine 32, 150-156 (2015). doi: 10.1109/MSP.2015.2419292
[52] Ginesu, G., Pintus, M. & Giusto, D. D. Objective assessment of the WebP image coding algorithm. Signal Processing: Image Communication 27, 867-874 (2012). doi: 10.1016/j.image.2012.01.011
[53] Skodras, A., Christopoulos, C. & Ebrahimi, T. The JPEG 2000 still image compression standard. IEEE Signal Processing Magazine 18, 36-58 (2001). doi: 10.1109/79.952804
[54] Ahar, A. et al. Validation of dynamic subjective quality assessment methodology for holographic coding solutions. 2021 13th International Conference on Quality of Multimedia Experience (QoMEX). Montreal: IEEE, 2021.
[55] Sullivan, G. J. & Wiegand, T. Video compression - from concepts to the H.264/AVC standard. Proceedings of the IEEE 93, 18-31 (2005). doi: 10.1109/JPROC.2004.839617
[56] Sullivan, G. J. et al. Overview of the high efficiency video coding (HEVC) standard. IEEE Transactions on Circuits and Systems for Video Technology 22, 1649-1668 (2012). doi: 10.1109/TCSVT.2012.2221191
[57] Mukherjee, D. et al. A technical overview of VP9- the latest open-source video codec. SMPTE Motion Imaging Journal 124, 44-54 (2015). doi: 10.5594/j18499
[58] Naughton, T. J. et al. Compression of digital holograms for three-dimensional object reconstruction and recognition. Applied Optics, 41, 4124-4132 (2002). doi: 10.1364/AO.41.004124
[59] Mills, G. A. & Yamaguchi, I. Effects of quantization in phase-shifting digital holography. Applied Optics 44, 1216-1225 (2005). doi: 10.1364/AO.44.001216
[60] Shortt, A. E., Naughton, T. J. & Javidi, B. Histogram approaches for lossy compression of digital holograms of three-dimensional objects. IEEE Transactions on Image Processing 16, 1548-1556 (2007). doi: 10.1109/TIP.2007.894269
[61] Cheremkhin, P. A. & Kurbatova, E. A. Numerical comparison of scalar and vector methods of digital hologram compression. Proceedings of SPIE 10022, Holography, Diffractive Optics, and Applications VⅡ. Beijing: SPIE, 2016, 1002227.
[62] Xing, Y. F., Pesquet-Popescu, B. & Dufaux, F. Comparative study of scalar and vector quantization on different phase-shifting digital holographic data representations. 2014 3DTV-Conference: The True Vision-Capture, Transmission and Display of 3D Video (3DTV-CON). Budapest: IEEE (2014).
[63] Bang, L. T. et al. Compression of digital hologram for three-dimensional object using Wavelet-Bandelets transform. Optics Express 19, 8019-8031 (2011). doi: 10.1364/OE.19.008019
[64] Blinder, D. et al. JPEG 2000-based compression of fringe patterns for digital holographic microscopy. Optical Engineering 53, 123102 (2014). doi: 10.1117/1.OE.53.12.123102
[65] Peixeiro, J. P. et al. Holographic Data Coding: Benchmarking and Extending HEVC With Adapted Transforms. IEEE Transactions on Multimedia 20, 282-297 (2018). doi: 10.1109/TMM.2017.2742701
[66] Xing, Y. F. et al. Vector lifting scheme for phaseshifting holographic data compression. Optical Engineering 53, 112312 (2014). doi: 10.1117/1.OE.53.11.112312
[67] Xing, Y. F. et al. Adaptive nonseparable vector lifting scheme for digital holographic data compression. Applied Optics 54, A98-A109 (2015). doi: 10.1364/AO.54.000A98
[68] Birnbaum, T. et al. Wave atoms for digital hologram compression. Applied Optics 58, 6193-6203 (2019). doi: 10.1364/AO.58.006193
[69] Onural, L. Diffraction from a wavelet point of view. Optics letters 18, 846-848 (1993). doi: 10.1364/OL.18.000846
[70] Liebling, M., B lu, T. & Unser, M. Fresnelets: new multiresolution wavelet bases for digital holography. IEEE Transactions on Image Processing 12, 29-43 (2003). doi: 10.1109/TIP.2002.806243
[71] Darakis, E. & Soraghan, J. J. Use of fresnelets for phase-shifting digital hologram compression. IEEE Transactions on Image Processing 15, 3804-3811 (2006). doi: 10.1109/TIP.2006.884918
[72] Bernardo, M. V. et al. Holographic representation: hologram plane vs. object plane. Signal Processing: Image Communication 68, 193-206 (2018). doi: 10.1016/j.image.2018.08.006
[73] Bernardo, M. V., Pinheiro, A. M. G. & Pereira, M. Benchmarking coding standards for digital holography represented on the object plane. Proceedings of SPIE 10679, Optics, Photonics, and Digital Technologies for Imaging Applications V. Strasbourg: SPIE 2018.
[74] Bernardo, M. V. et al. Efficient coding of experimental holograms using speckle denoising. Signal Processing: Image Communication 96, 116306 (2021). doi: 10.1016/j.image.2021.116306
[75] Blinder, D. et al. Unitary Transforms Using Time-Frequency Warping for Digital Holograms of Deep Scenes. IEEE Transactions on Computational Imaging 4, 206-218 (2018). doi: 10.1109/TCI.2018.2813167
[76] Seo, Y. H., Ch oi, H. J. & Kim, D. W. 3D scanningbased compression technique for digital hologram video. Signal Processing: Image Communication 22, 144-156 (2007). doi: 10.1016/j.image.2006.11.007
[77] Gilles, A. & Gioia, P. Compression and reconstruction of extremely-high resolution holograms based on hologram-lightfield transforms. Proceedings of SPIE 11510, Applications of Digital Image Processing XLⅢ. SPIE 2020.
[78] Lee, D. H. et al. Viewing angle dependent coding of digital holograms. 2011 19th European Signal Processing Conference. Barcelona: IEEE 2011, 1367–1371.
[79] El Rhammad, A. et al. Color digital hologram compression based on matching pursuit. Applied Optics 57, 4930-4942 (2018). doi: 10.1364/AO.57.004930
[80] El Rhammad, A. et al. View-dependent compression of digital hologram based on matching pursuit. Proceedings of SPIE 10679, Optics, Photonics, and Digital Technologies for Imaging Applications V. Strasbourg: SPIE 2018.
[81] El Rhammad, A. et al. Progressive hologram transmission using a view-dependent scalable compression scheme. Annals of Telecommunications 75, 201-214 (2020). doi: 10.1007/s12243-019-00741-7
[82] Darakis, E. & Naughton, T. J. Compression of digital hologram sequences using MPEG-4. Proceedings of SPIE 7358, Holography: Advances and Modern Trends. Prague: SPIE 2009.
[83] Blinder, D., Schretter, C. & Schelkens, P. Global motion compensation for compressing holographic videos. Optics Express 26, 25524-25533 (2018). doi: 10.1364/OE.26.025524
[84] Muhamad, R. K. et al. Exact global motion compensation for holographic video compression. Applied Optics 58, G204-G217 (2019). doi: 10.1364/AO.58.00G204
[85] Matsushima, K. Formulation of the rotational transformation of wave fields and their application to digital holography. Applied Optics 47, D110-D116 (2008). doi: 10.1364/AO.47.00D110
[86] Cao, H. K. & Kim, E. S. Faster generation of holographic videos of objects moving in space using a spherical hologram-based 3-D rotational motion compensation scheme. Optics Express 27, 29139-29157 (2019). doi: 10.1364/OE.27.029139
[87] Birnbaum, T. et al. Object-based digital hologram segmentation and motion compensation. Optics Express 28, 11861-11882 (2020). doi: 10.1364/OE.385565
[88] Jaferzadeh, K., Gholami, S. & Moon, I. Lossless and lossy compression of quantitative phase images of red blood cells obtained by digital holographic imaging. Applied Optics 55, 10409-10416 (2016). doi: 10.1364/AO.55.010409
[89] Langehanenberg, P., von Bally, G. & Kemper, B. Autofocusing in digital holographic microscopy. 3D Research 2, (2011).
[90] Cheremkhin, P. A. & Kurbatova, E. A. Quality of reconstruction of compressed off-axis digital holograms by frequency filtering and wavelets. Applied Optics 57, A55-A64 (2018). doi: 10.1364/AO.57.000A55
[91] Bruylants, T. et al. Microscopic off-axis holographic image compression with JPEG 2000. Proceedings of SPIE 9138, Optics, Photonics, and Digital Technologies for Multimedia Applications Ⅲ. Brussels: SPIE, 2014, 128–138.
[92] Muhamad, R. K. et al. Off-axis image plane hologram compression in holographic tomography - metrological assessment. Optics Express 30, 4261-4273 (2022). doi: 10.1364/OE.449932
[93] ISO/IEC JTC1/SC29/WG1. Common Test Conditions 6.0 for JPEG Pleno Holography.
[94] Symeonidou, A. et al. Computer-generated holograms by multiple wavefront recording plane method with occlusion culling. Optics Express 23, 22149-22161 (2015). doi: 10.1364/OE.23.022149
[95] Park, J. H. Recent progress in computer-generated holography for three-dimensional scenes. Journal of Information Display 18, 1-12 (2017). doi: 10.1080/15980316.2016.1255672
[96] Pan, Y. J. et al. A Review of Dynamic Holographic Three-Dimensional Display: Algorithms, Devices, and Systems. IEEE Transactions on Industrial Informatics 12, 1599-1610 (2016). doi: 10.1109/TII.2015.2496304
[97] Sugie, T. et al. High-performance parallel computing for next-generation holographic imaging. Nature Electronics 1, 254-259 (2018). doi: 10.1038/s41928-018-0057-5
[98] Shimobaba, T. & Ito, T. Computer Holography: Acceleration Algorithms and Hardware Implementations. (Boca Raton: CRC Press 2018).
[99] Nishitsuji, T. et al. Review of fast calculation techniques for computer-generated holograms with the point light-source-based model. IEEE Transactions on Industrial Informatics 13, 2447-2454 (2017). doi: 10.1109/TII.2017.2669200
[100] Blinder, D. et al. Open Access Database for Experimental Validations of Holographic Compression Engines. 2015 Seventh International Workshop on Quality of Multimedia Experience (QoMEX). Pilos: IEEE, 2015.
[101] Gilles, A. et al. Hybrid approach for fast occlusion processing in computer-generated hologram calculation. Applied Optics 55, 5459-5470 (2016). doi: 10.1364/AO.55.005459
[102] Gilles, A. et al. Computer generated hologram from multiview-plus-depth data considering specular reflections. 2016 IEEE International Conference on Multimedia & Expo Workshops (ICMEW). Seattle: IEEE, 2016.
[103] Symeonidou, A. et al. Speckle noise reduction for computer generated holograms of objects with diffuse surfaces. Proceedings of SPIE 9896, Optics, Photonics and Digital Technologies for Imaging Applications IV. Brussels: SPIE, 2016.
[104] Symeonidou, A. et al. Colour computer-generated holography for point clouds utilizing the phong illumination model. Optics Express 26, 10282-10298 (2018). doi: 10.1364/OE.26.010282
[105] ISO/IEC JTC1/SC29/WG1. JPEG Pleno Database. https://jpeg.org/jpegpleno/plenodb.html.
[106] Corda, R. & Perra, C. A dataset of hologram reconstructions at different distances and viewpoints for quality evaluation. 2019 Eleventh International Conference on Quality of Multimedia Experience (QoMEX). Berlin: IEEE, 2018.
[107] Tsang, P. W. M. & Poon, T. C. Review on the stateof-the-art technologies for acquisition and display of digital holograms. IEEE Transactions on Industrial Informatics 12, 886-901 (2016). doi: 10.1109/TII.2016.2550535
[108] T. Kreis. 3-D display by referenceless phase holography. IEEE Transactions on Industrial Informatics 12, 685-693 (2016). doi: 10.1109/TII.2016.2527626
[109] Lehtimäki, T. M. et al. Using traditional glass plate holograms to study visual perception of future digital holographic displays. Digital Holography and ThreeDimensional Imaging 2016. Heidelberg: Optical Society of America, 2016.
[110] Bjelkhagen, H. I. Ultra-realistic 3-D imaging based on colour holography. Journal of Physics: Conference Series 415, 012023 (2013). doi: 10.1088/1742-6596/415/1/012023
[111] Su, J. et al. Progress in the synthetic holographic stereogram printing technique. Applied Sciences 8, 851 (2018). doi: 10.3390/app8060851
[112] Sohn, I. B. et al. Three-dimensional hologram printing by single beam femtosecond laser direct writing. Applied Surface Science 427, 396-400 (2018).
[113] Klug, M. A. Display applications of large-scale digital holography. Proceedings of SPIE 4737, Holography: A Tribute to Yuri Denisyuk and Emmett Leith. Orlando: SPIE, 2002.
[114] Yang, X. et al. High-resolution Fresnel hologram information simplification and color 3D display. Optik 216, 164919 (2020). doi: 10.1016/j.ijleo.2020.164919
[115] Jeon, H. et al. High-resolution binary hologram printing methods. Proceedings of SPIE 11306, Practical Holography XXXIV: Displays, Materials, and Applications. San Francisco: SPIE, 2020.
[116] Lehtimäki, T. M. et al. Visual perception of digital holograms on autostereoscopic displays. Proceedings of SPIE 7329, Three-Dimensional Imaging, Visualization, and Display 2009. Orlando: SPIE, 2009.
[117] Lehtimäki, T. M. et al. Evaluation of perceived quality attributes of digital holograms viewed with a stereoscopic display. 2010 9th Euro-American Workshop on Information Optics. Helsinki: IEEE, 2010.
[118] Lehtimäki, T. M. et al. Comparing numerical error and visual quality in reconstructions from compressed digital holograms. Proceedings Volume 7690, Three-Dimensional Imaging, Visualization, and Display 2010 and Display Technologies and Applications for Defense, Security, and Avionics IV. Orlando: SPIE, 2010.
[119] Ahar, A. et al. Subjective quality assessment of numerically reconstructed compressed holograms. Proceedings of SPIE 9599, Applications of Digital Image Processing XXXVⅢ. San Diego: SPIE, 2015.
[120] Fonseca, E. et al. Assessment of speckle denoising filters for digital holography using subjective and objective evaluation models. Applied Optics 58, G282-G292 (2019). doi: 10.1364/AO.58.00G282
[121] Ahar, A. et al. Suitability analysis of holographic vs light field and 2D displays for subjective quality assessment of Fourier holograms. Optics Express 28, 37069-37091 (2020). doi: 10.1364/OE.405984
[122] Amirpourazarian, H. et al. Quality evaluation of holographic images coded with standard codecs. IEEE Transactions on Multimedia, http://dx.doi.org/10.1109/TMM.2021.3096059 (2021).
[123] Corda, R. & Perra, C. Hologram domain data compression: Performance of standard codecs and image quality assessment at different distances and perspectives. IEEE Transactions on Broadcasting 66, 292-309 (2019).
[124] Corda, R. et al. Investigation of Coding Standards Performances on Optically Acquired and Synthetic Holograms. Proceedings of the 20th International Conference on Advanced Concepts for Intelligent Vision Systems. Cham: Springer, 2020, 396-407.
[125] Ahar, A. et al. A new similarity measure for complex amplitude holographic data. Digital Holography and Three-Dimensional Imaging 2017. JeJu Island Republic of Korea: Optical Society of America, 2017.
[126] Ahar, A., Barri, A. & Schelkens, P. From sparse coding significance to perceptual quality: A new approach for image quality assessment. IEEE Transactions on Image Processing 27, 879-893 (2018). doi: 10.1109/TIP.2017.2771412
[127] Ahar, A. et al. Performance evaluation of sparseness significance ranking measure (SSRM) on holographic content. 3D Image Acquisition and Display: Technology, Perception and Applications 2018. Orlando: Optical Society of America, 2018.
[128] Ahar, A. et al. A new similarity measure for complex amplitude holographic data. Proceedings of SPIE 10396, Applications of Digital Image Processing XL. San Diego: SPIE, 2017.
[129] Ahar, A. et al. Comprehensive performance analysis of objective quality metrics for digital holography. Signal Processing: Image Communication 97, 116361 (2021). doi: 10.1016/j.image.2021.116361
[130] Ghiglia, D. C. & Romero, L. A. Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods. Journal of the Optical Society of America A 11, 107-117 (1994). doi: 10.1364/JOSAA.11.000107