[1] Fejer, M. M. Nonlinear optical frequency conversion. Physics Today 47, 25-32 (1994). doi: 10.1063/1.881430
[2] Halasyamani, P. S. & Rondinelli, J. M. The must-have and nice-to-have experimental and computational requirements for functional frequency doubling deep-UV crystals. Nature Communications 9, 2972 (2018). doi: 10.1038/s41467-018-05411-1
[3] Yi, R. X. et al. Self-frequency-conversion nanowire lasers. Light: Science & Applications 11 , 120 (2022).
[4] Hao, Z. Z. et al. Sum-frequency generation of a laser and its background in an on-chip lithium-niobate microdisk. Chinese Optics Letters 20, 111902 (2022).
[5] Chen, X. Y. et al. Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nature Protocols 7, 654-669 (2012). doi: 10.1038/nprot.2012.009
[6] Rouède, D. et al. Determination of extracellular matrix collagen fibril architectures and pathological remodeling by polarization dependent second harmonic microscopy. Scientific Reports 7, 12197 (2017). doi: 10.1038/s41598-017-12398-0
[7] Liu, X. L. et al. Imaging the structure and organization of mouse cerebellum and brain stem with second harmonic generation microscopy. Chinese Optics Letters 15, 090003 (2017). doi: 10.3788/COL201715.090003
[8] De Boer, W. D. A. M. et al. Neuronal photoactivation through second-harmonic near-infrared absorption by gold nanoparticles. Light: Science & Applications 7 , 100 (2018).
[9] Nakayama, Y. et al. Tunable nanowire nonlinear optical probe. Nature 447, 1098-1101 (2007).
[10] Dhakal, K. P. et al. Probing the upper band gap of atomic rhenium disulfide layers. Light: Science & Applications 7 , 98 (2018).
[11] Psilodimitrakopoulos, S. et al. Ultrahigh-resolution nonlinear optical imaging of the armchair orientation in 2D transition metal dichalcogenides. Light: Science & Applications 7 , 18005 (2018).
[12] Gan, X. T. et al. Microwatts continuous-wave pumped second harmonic generation in few- and mono-layer GaSe. Light: Science & Applications 7 , 17126 (2018).
[13] Wang, B. B. et al. High-efficiency second-harmonic and sum-frequency generation in a silicon nitride microring integrated with few-layer GaSe. ACS Photonics 9, 1671-1678 (2022). doi: 10.1021/acsphotonics.2c00038
[14] Säynätjoki, A. et al. Ultra-strong nonlinear optical processes and trigonal warping in MoS2 layers. Nature Communications 8, 893 (2017).
[15] Zhang, M. W. et al. Emergent second-harmonic generation in van der Waals heterostructure of bilayer MoS2 and monolayer graphene. Science Advances 9, eadf4571 (2023). doi: 10.1126/sciadv.adf4571
[16] Wang, J. et al. Second harmonic generation in van der Waals heterostructure of centrosymmetric ReS2 and graphene. Advanced Optical Materials 11, 2202495 (2023). doi: 10.1002/adom.202202495
[17] Fan, X. P. et al. Broken symmetry induced strong nonlinear optical effects in spiral WS2 nanosheets. ACS Nano 11, 4892-4898 (2017). doi: 10.1021/acsnano.7b01457
[18] Zhou, X. et al. Strong second-harmonic generation in atomic layered GaSe. Journal of the American Chemical Society 137, 7994-7997 (2015).
[19] Jie, W. J. et al. Layer‐dependent nonlinear optical properties and stability of non‐centrosymmetric modification in few‐layer GaSe sheets. Angewandte Chemie International Edition 54, 1185-1189 (2015). doi: 10.1002/anie.201409837
[20] Tang, Y. H. et al. Layer- and frequency-dependent second harmonic generation in reflection from GaSe atomic crystals. Physical Review B 94, 125302 (2016). doi: 10.1103/PhysRevB.94.125302
[21] Fang, L. et al. Multiple optical frequency conversions in few‐layer GaSe assisted by a photonic crystal cavity. Advanced Optical Materials 6, 1800698 (2018). doi: 10.1002/adom.201800698
[22] Yuan, Q. C. et al. Second harmonic and sum-frequency generations from a silicon metasurface integrated with a two-dimensional material. ACS Photonics 6, 2252-2259 (2019).
[23] Liu, Z. J. et al. Giant enhancement of continuous wave second harmonic generation from few-layer GaSe coupled to high-Q quasi bound states in the continuum. Nano Letters 21, 7405-7410 (2021). doi: 10.1021/acs.nanolett.1c01975
[24] Chen, J. H. et al. Silica optical fiber integrated with two-dimensional materials: towards opto-electro-mechanical technology. Light: Science & Applications 10 , 78 (2021).
[25] Chen, J. H. et al. Tunable and enhanced light emission in hybrid WS2-optical-fiber-nanowire structures. Light: Science & Applications 8 , 8 (2019).
[26] Jiang, B. Q. et al. High-efficiency second-order nonlinear processes in an optical microfibre assisted by few-layer GaSe. Light: Science & Applications 9 , 63 (2020).
[27] Hao, Z. et al. Strain-controlled phase matching of optical harmonic generation in microfibers. Physical Review Applied 19, L031002 (2023). doi: 10.1103/PhysRevApplied.19.L031002
[28] Hao, Z. et al. Continuous-wave pumped frequency upconversions in an InSe-integrated microfiber. Optics Letters 46, 733-736 (2021). doi: 10.1364/OL.413451
[29] Hao, Z. et al. Broadband and continuous wave pumped second-harmonic generation from microfiber coated with layered GaSe crystal. Opto-Electronic Advances 6, 230012 (2023).
[30] Hao, Z. et al. Second harmonic generation in a hollow-core fiber filled with GaSe nanosheets. Science China Information Sciences 65, 162403 (2022). doi: 10.1007/s11432-021-3331-3
[31] Zuo, Y. G. et al. Optical fibres with embedded two-dimensional materials for ultrahigh nonlinearity. Nature Nanotechnology 15, 987-991 (2020). doi: 10.1038/s41565-020-0770-x
[32] Ma, Y. X. et al. Suspended-core fiber with embedded GaSe nanosheets for second harmonic generation. Optics Express 30, 32438-32446 (2022). doi: 10.1364/OE.465248
[33] Ngo, G. Q. et al. In-fibre second-harmonic generation with embedded two-dimensional materials. Nature Photonics 16, 769-776 (2022).
[34] Bhardwaj, N. & Kundu, S. C. Electrospinning: a fascinating fiber fabrication technique. Biotechnology advances 28, 325-347 (2010). doi: 10.1016/j.biotechadv.2010.01.004
[35] Cui, T. Y. et al. From monomeric nanofibers to PbS nanoparticles/polymer composite nanofibers through the combined use of γ-irradiation and gas/solid reaction. Journal of the American Chemical Society 128, 6298-6299 (2006). doi: 10.1021/ja060517w
[36] Zou, W. J. et al. Biomimetic superhelical conducting microfibers with homochirality for enantioselective sensing. Journal of the American Chemical Society 136, 578-581 (2014).
[37] Xu, J. L. et al. Self-assembled organic microfibers for nonlinear optics. Advanced Materials 25, 2084-2089 (2013). doi: 10.1002/adma.201204237
[38] Geim, A. K. et al. Microfabricated adhesive mimicking gecko foot-hair. Nature Materials 2, 461-463 (2003). doi: 10.1038/nmat917
[39] Yu, H. Y. et al. Three-dimensional direct laser writing of PEGda hydrogel microstructures with low threshold power using a green laser beam. Light: Advanced Manufacturing 2, 31-38 (2021). doi: 10.37188/lam.2021.003
[40] Zou, M. Q. et al. Fiber-tip polymer clamped-beam probe for high-sensitivity nanoforce measurements. Light: Science & Applications 10 , 171 (2021).
[41] Gao, T. T. et al. Three-dimensional printed thermal regulation textiles. ACS Nano 11, 11513-11520 (2017).
[42] Kara, Y. et al. A novel method and printhead for 3D printing combined nano-/microfiber solid structures. Additive Manufacturing 61, 103315 (2023). doi: 10.1016/j.addma.2022.103315
[43] Harfenist, S. A. et al. Direct drawing of suspended filamentary micro- and nanostructures from liquid polymers. Nano Letters 4, 1931-1937 (2004). doi: 10.1021/nl048919u
[44] Xing, X. B., Wang, Y. Q. & Li, B. J. Nanofiber drawing and nanodevice assembly in poly(trimethylene terephthalate). Optics Express 16, 10815-10822 (2008). doi: 10.1364/OE.16.010815
[45] Bisht, G. S. et al. Controlled continuous patterning of polymeric nanofibers on three-dimensional substrates using low-voltage near-field electrospinning. Nano Letters 11, 1831-1837 (2011).
[46] Gu, F. X. et al. Light-emitting polymer single nanofibers via waveguiding excitation. ACS Nano 4, 5332-5338 (2010). doi: 10.1021/nn100775v
[47] Yu, H. Q. & Li, B. J. Wavelength-converted wave-guiding in dye-doped polymer nanofibers. Scientific Reports 3, 1674 (2013). doi: 10.1038/srep01674
[48] Senthamizhan, A. et al. Highly fluorescent pyrene-functional polystyrene copolymer nanofibers for enhanced sensing performance of TNT. ACS Applied Materials & Interfaces 7, 21038-21046 (2015).
[49] Safaie, B., Youssefi, M. & Rezaei, B. The structure and fluorescence properties of polypropylene/carbon quantum dot composite fibers. Polymer Bulletin 79, 1367-1389 (2022).
[50] Wang, P. et al. Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing. Nano Letters 12, 3145-3150 (2012). doi: 10.1021/nl301055f
[51] Chen, J. Y. et al. Plasmon‐enhanced polymer photovoltaic device performance using different patterned Ag/PVP electrospun nanofibers. Advanced Energy Materials 4, 1301665 (2014). doi: 10.1002/aenm.201301665
[52] Yang, X. G. et al. Gold nanorod-enhanced light emission in quantum-dot-doped polymer nanofibers. ACS Applied Materials & Interfaces 6, 11846-11850 (2014).
[53] Su, Z. Q., Ding, J. W. & Wei, G. Electrospinning: A facile technique for fabricating polymeric nanofibers doped with carbon nanotubes and metallic nanoparticles for sensor applications. RSC Advances 4, 52598-52610 (2014). doi: 10.1039/C4RA07848A
[54] Schoolaert, E., Hoogenboom, R. & De Clerck, K. Colorimetric nanofibers as optical sensors. Advanced Functional Materials 27, 1702646 (2017). doi: 10.1002/adfm.201702646
[55] Feng, D. Y. et al. SnO2/polyvinyl alcohol nanofibers wrapped tilted fiber grating for high-sensitive humidity sensing and fast human breath monitoring. Sensors and Actuators B: Chemical 388, 133807 (2023).
[56] Wang, Y., Yokota, T. & Someya, T. Electrospun nanofiber-based soft electronics. NPG Asia Materials 13, 22 (2021). doi: 10.1038/s41427-020-00267-8
[57] Tanaka, M. et al. Acid-doped polymer nanofiber framework: Three-dimensional proton conductive network for high-performance fuel cells. Journal of Power Sources 342, 125-134 (2017). doi: 10.1016/j.jpowsour.2016.12.018
[58] Wang, P. , Wang, Y. P. & Tong, L. M. Functionalized polymer nanofibers: a versatile platform for manipulating light at the nanoscale. Light: Science & Applications 2 , e102 (2013).
[59] Zhang, J. B. et al. Single microwire optical autocorrelator at 2-μm wavelength. IEEE Photonics Technology Letters 34, 207-210 (2022). doi: 10.1109/LPT.2022.3146878
[60] Meng, C. et al. Graphene-doped polymer nanofibers for low-threshold nonlinear optical waveguiding. Light: Science & Applications 4 , e348 (2015).
[61] Wiedemann, U. et al. Measurement of submicrometre diameters of tapered optical fibres using harmonic generation. Optics Express 18, 7693-7704 (2010).
[62] Autere, A. et al. Nonlinear optics with 2D layered materials. Advanced Materials 30, 1705963 (2018). doi: 10.1002/adma.201705963
[63] Ullah, K. et al. Harmonic generation in low‐dimensional materials. Advanced Optical Materials 10, 2101860 (2022). doi: 10.1002/adom.202101860
[64] Larciprete, M. C. & Centini, M. Second harmonic generation from ZnO films and nanostructures. Applied Physics Reviews 2, 031302 (2015). doi: 10.1063/1.4928032
[65] Hu, H. B. et al. Precise determination of the crystallographic orientations in single ZnS nanowires by second-harmonic generation microscopy. Nano Letters 15, 3351-3357 (2015). doi: 10.1021/acs.nanolett.5b00607
[66] Xin, C. G. et al. Single CdTe nanowire optical correlator for femtojoule pulses. Nano Letters 16, 4807-4810 (2016).
[67] Liu, W. W. et al. Laterally emitted surface second harmonic generation in a single ZnTe nanowire. Nano Letters 13, 4224-4229 (2013). doi: 10.1021/nl401921s
[68] Kuo, P. S., Bravo-Abad, J. & Solomon, G. S. Second-harmonic generation using`4-quasi-phasematching in a GaAs whispering-gallery-mode microcavity. Nature Communications 5, 3109 (2014). doi: 10.1038/ncomms4109
[69] Lu, X. Y. et al. Efficient photoinduced second-harmonic generation in silicon nitride photonics. Nature Photonics 15, 131-136 (2021). doi: 10.1038/s41566-020-00708-4