[1] Jones, M. A sensitive issue. Nature Photonics 2, 153-154 (2008). doi: 10.1038/nphoton.2008.20
[2] Miah, K. & Potter, D. A review of hybrid fiber-optic distributed simultaneous vibration and temperature sensing technology and its geophysical applications. Sensors 17, 2511 (2017). doi: 10.3390/s17112511
[3] Peng, F. et al. Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines. Optics Express 22, 13804-13810 (2014). doi: 10.1364/OE.22.013804
[4] Bao, X. Y. & Chen, L. Recent progress in distributed fiber optic sensors. Sensors 12, 8601-8639 (2012). doi: 10.3390/s120708601
[5] Thévenaz, L. Review and progress in distributed fiber sensing. Optical Fiber Sensors 2006. Cancun: Optica Publishing Group, 2006, ThC1.
[6] Pastor-Graells, J. et al. Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses. Optics Express 24, 13121 (2016). doi: 10.1364/OE.24.013121
[7] Soller, B. J. et al. High resolution optical frequency domain reflectometry for characterization of components and assemblies. Optics Express 13, 666-674 (2005). doi: 10.1364/OPEX.13.000666
[8] Lu, Y. L. et al. Distributed vibration sensor based on coherent detection of phase-OTDR. Journal of Lightwave Technology 28, 3243-3249 (2010).
[9] Pan, Z. Q. et al. Phase-sensitive OTDR system based on digital coherent detection. Asia Communications and Photonics Conference and Exhibition 2011. Shanghai: Optica Publishing Group, 2011.
[10] Motil, A. , Bergman, A. & Tur, M. [INVITED] State of the art of Brillouin fiber-optic distributed sensing. Optics & Laser Technology 78, 81-103 (2016).
[11] Bahrampour, A. R. et al. Spatial resolution enhancement in fiber Raman distributed temperature sensor by employing ForWaRD deconvolution algorithm. Optical Fiber Technology 17, 128-134 (2011). doi: 10.1016/j.yofte.2011.01.005
[12] Dakin, J. P. et al. Distributed optical fibre raman temperature sensor using a semiconductor light source and detector. Electronics Letters 21, 569-570 (1985). doi: 10.1049/el:19850402
[13] Wang, Z. et al. An optical fiber-folded distributed temperature sensor based on Raman backscattering. Optics & Laser Technology 93, 224-227 (2017).
[14] Weng, Y. et al. Single-end simultaneous temperature and strain sensing techniques based on Brillouin optical time domain reflectometry in few-mode fibers. Optics Express 23, 9024-9039 (2015). doi: 10.1364/OE.23.009024
[15] Sheng, L. W. et al. Study on the simultaneous distributed measurement of temperature and strain based on Brillouin scattering in dispersion-shifted fiber. OSA Continuum 3, 2078-2085 (2020). doi: 10.1364/OSAC.398410
[16] Mao, Y. et al. Simultaneous distributed acoustic and temperature sensing using a multimode fiber. IEEE Journal of Selected Topics in Quantum Electronics 26, 5600207 (2020).
[17] Li, A. et al. Few-mode fiber multi-parameter sensor with distributed temperature and strain discrimination. Optics Letters 40, 1488-1491 (2015). doi: 10.1364/OL.40.001488
[18] Fang, J. et al. Multi-parameter distributed fiber sensing with higher-order optical and acoustic modes. Optics Letters 44, 1096 (2019). doi: 10.1364/OL.44.001096
[19] Coscetta, A. et al. Hybrid Brillouin/Rayleigh sensor for multiparameter measurements in optical fibers. Optics Express 29, 24025-24031 (2021). doi: 10.1364/OE.426427
[20] Fu, Y. et al. Ultra-long-distance hybrid BOTDA/Ф-OTDR. Sensors 18, 976 (2018).
[21] Hartog, A. H. & Englich, F. V. Non-linear interactions with backscattered light: a truly single-ended brillouin optical time-domain analysis technique. Journal of Lightwave Technology 37, 2386-2402 (2019). doi: 10.1109/JLT.2019.2905668
[22] Li, Y. Q. et al. Rayleigh Brillouin optical time-domain analysis system using heterodyne detection and wavelength scanning. Optical Engineering 57, 056112 (2018).
[23] Peng, F. & Cao, X. L. A hybrid Φ/B-OTDR for simultaneous vibration and strain measurement. Photonic Sensors 6, 121-126 (2016). doi: 10.1007/s13320-016-0289-9
[24] Wang, B. Z. et al. High-sensitivity distributed dynamic strain sensing by combining Rayleigh and Brillouin scattering. Opto-Electronic Advances 3, 20001301-20001315 (2020). doi: 10.29026/oea.2020.200013
[25] Zhang, J. D. et al. High spatial resolution distributed fiber system for multi-parameter sensing based on modulated pulses. Optics Express 24, 27482-27493 (2016). doi: 10.1364/OE.24.027482
[26] Zhang, X. P., Hu, J. H. & Zhang, Y. X. A hybrid single-end-access BOTDA and COTDR sensing system using heterodyne detection. Journal of Lightwave Technology 31, 1954-1959 (2013). doi: 10.1109/JLT.2013.2262498
[27] Zhou, Z. X. et al. Distributed vibration and temperature simultaneous sensing using one optical fiber. Optics Communications 487, 126801 (2021). doi: 10.1016/j.optcom.2021.126801
[28] Huang, L. J. , Fan, X. Y. & He, Z. Y. Hybrid distributed fiber-optic sensing system by using Rayleigh backscattering lightwave as probe of stimulated Brillouin scattering. Journal of Lightwave Technology 1-7 (2022).
[29] Huang, L. J., He, Z. Y. & Fan, X. Y. Simplified single-end Rayleigh and Brillouin hybrid distributed fiber-optic sensing system. Science China Information Sciences 66, 129404 (2023). doi: 10.1007/s11432-022-3554-0
[30] Agrawal, G. Nonlinear Fiber Optics. 5th edn. (Boston: Acadamic Press, 2012).
[31] Alahbabi, M. N. , Cho, Y. T. & Newson, T. P. Simultaneous distributed measurements of temperature and strain using spontaneous Raman and Brillouin scattering. Proceedings of SPIE 5502, Second European Workshop on Optical Fibre Sensors. Santander: SPIE, 2004.
[32] Stolen, R. H. & Ippen, E. P. Raman gain in glass optical waveguides. Applied Physics Letters 22, 276-278 (1973). doi: 10.1063/1.1654637
[33] Wang, Z. N. et al. Coherent Φ-OTDR based on I/Q demodulation and homodyne detection. Optics Express 24, 853-858 (2016). doi: 10.1364/OE.24.000853
[34] Masoudi, A., Belal, M. & Newson, T. P. A distributed optical fibre dynamic strain sensor based on phase-OTDR. Measurement Science and Technology 24, 085204 (2013). doi: 10.1088/0957-0233/24/8/085204
[35] Fang, G. S. et al. Phase-sensitive optical time domain reflectometer based on phase-generated carrier algorithm. Journal of Lightwave Technology 33, 2811-2816 (2015). doi: 10.1109/JLT.2015.2414416
[36] Wang, Z. N. et al. Ultra-long phase-sensitive OTDR with hybrid distributed amplification. Optics Letters 39, 5866-5869 (2014). doi: 10.1364/OL.39.005866
[37] Thévenaz, L. & Yang, Z. S. Closed-loop controlled brillouin optical time-domain analysis. Specialty Optical Fibers 2018. Zurich: Optica Publishing Group, 2018, SoW3H. 1.
[38] Soto, M. A. et al. Time and frequency pump-probe multiplexing to enhance the signal response of Brillouin optical time-domain analyzers. Optics Express 22, 28584-28595 (2014). doi: 10.1364/OE.22.028584
[39] Zan, M. S. D. B., Tsumuraya, T. & Horiguchi, T. The use of Walsh code in modulating the pump light of high spatial resolution phase-shift-pulse Brillouin optical time domain analysis with non-return-to-zero pulses. Measurement Science & Technology 24, 094025 (2013).
[40] Angulo-Vinuesa, X. et al. Raman-assisted Brillouin optical time-domain analysis with sub-meter resolution over 100 km. Optics Express 20, 12147-12154 (2012). doi: 10.1364/OE.20.012147
[41] Sun, X. Z. et al. Ultra-long Brillouin optical time-domain analyzer based on distortion compensating pulse and hybrid lumped-distributed amplification. APL Photonics 7, 126107 (2022). doi: 10.1063/5.0126068
[42] Hwang, D. et al. Novel auto-correction method in a fiber-optic distributed-temperature sensor using reflected anti-Stokes Raman scattering. Optics Express 18, 9747-9754 (2010). doi: 10.1364/OE.18.009747
[43] Wang, Z. L. et al. An improved denoising method in RDTS based on wavelet transform modulus Maxima. IEEE Sensors Journal 15, 1061-1067 (2015). doi: 10.1109/JSEN.2014.2360559
[44] Soto, M. A. et al. Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low-repetition-rate cyclic pulse coding. Optics Letters 36, 2557-2559 (2011). doi: 10.1364/OL.36.002557
[45] Liu, Y. P. et al. Long-range Raman distributed temperature sensor with high spatial and temperature resolution using graded-index few-mode fiber. Optics Express 26, 20562-20571 (2018). doi: 10.1364/OE.26.020562
[46] Foaleng, S. M. & Thévenaz, L. Impact of Raman scattering and modulation instability on the performances of Brillouin sensors. Proceedings of SPIE 7753, 21st International Conference on Optical Fiber Sensors. Ottawa: SPIE, 2011, 77539V.
[47] Jin, W. et al. Simultaneous measurement of strain and temperature: Error analysis. Optical Engineering 36, 598-609 (1997). doi: 10.1117/1.601233