[1] Su, P. et al. Software configurable optical test system: a computerized reverse Hartmann test. Applied Optics 49, 4404-4412 (2010). doi: 10.1364/AO.49.004404
[2] Bai, X. Q. et al. Aberration fields of pupil-offset off-axis two-mirror astronomical telescopes induced by ROC error. Optics Express 28, 30447-30465 (2020). doi: 10.1364/OE.403470
[3] Wu, Y. et al. Design method for an off-axis reflective anamorphic optical system with aberration balance and constraint control. Applied Optics 60, 4557-4566 (2021). doi: 10.1364/AO.427713
[4] Fan, R. D. et al. Automated design of freeform imaging systems for automotive heads-up display applications. Optics Express 31, 10758-10774 (2023). doi: 10.1364/OE.484777
[5] Xiong Y. et al. In situ measurement and error compensation of monolithic multisurface optics. Optics Communications 484, 126665 (2021). doi: 10.1016/j.optcom.2020.126665
[6] Kiontke, S. R. Monolithic freeform element. Proceedings of SPIE 9575, Optical Manufacturing and Testing XI. San Diego, CA, United States: SPIE, 2015, 95750G.
[7] Hartung, J., von Lukowicz, H. & Kinast, J. Theoretical compensation of static deformations of freeform multimirror substrates. Applied Optics 57, 4020-4031 (2018). doi: 10.1364/AO.57.004020
[8] Lyu, H. et al. Measurement and characterization of position and posture of conjunctive multifreeform surfaces using multisensors. IEEE Transactions on Instrumentation and Measurement 72, 1003214 (2023).
[9] Hocken, R. J. & Pereira, P. H. Coordinate Measuring Machines and Systems. 2nd edn. (Boca Raton: CRC Press, 2016).
[10] Blalock, T. et al. The manufacturing of a multi-surface monolithic telescope with freeform surfaces. EPJ Web of Conferences 215, 06004 (2019). doi: 10.1051/epjconf/201921506004
[11] Chen, S. Y. et al. Corrective machining of monolithic multiple freeform mirrors based on holographic null test. Optics and Lasers in Engineering 170, 107789 (2023). doi: 10.1016/j.optlaseng.2023.107789
[12] Burge, J. H. , Zehnder, R. & Zhao, C. Y. Optical alignment with computer-generated holograms. Proceedings of SPIE 6676, Optical System Alignment and Tolerancing. San Diego, CA, United States: SPIE, 2007, 66760C.
[13] Beier, M. et al. Development, fabrication, and testing of an anamorphic imaging snap-together freeform telescope. Applied Optics 54, 3530-3542 (2015). doi: 10.1364/AO.54.003530
[14] Hartung, J. et al. Mathematical considerations for ultra precise diamond turning of multiple freeform metal mirrors on a common substrate. Proceedings of the Freeform Optics 2015. Arlington, VA, USA: Optica Publishing Group, 2015, FTh2B. 1.
[15] Pi, D. P. , Liu, J. & Wang, Y. T. Review of computer-generated hologram algorithms for color dynamic holographic three-dimensional display. Light: Science & Applications 11 , 231 (2022).
[16] Häusler, G. et al. Deflectometry vs. Interferometry. Proceedings of SPIE 8788, Optical Measurement Systems for Industrial Inspection VIII. Munich, Germany: SPIE, 2013, 87881C.
[17] Jiao, S. C. et al. Non-contact method of thickness measurement for thin-walled rotary shell parts based on chromatic confocal sensor. Measurement 224, 113794 (2024). doi: 10.1016/j.measurement.2023.113794
[18] Xu, Y. J., Gao, F. & Jiang, X. Q. A brief review of the technological advancements of phase measuring deflectometry. PhotoniX 1, 14 (2020). doi: 10.1186/s43074-020-00015-9
[19] Huang, L. et al. Modal phase measuring deflectometry. Optics Express 24, 24649-24664 (2016). doi: 10.1364/OE.24.024649
[20] Burke, J. et al. Deflectometry for specular surfaces: an overview. Advanced Optical Technologies 12, 1237687 (2023). doi: 10.3389/aot.2023.1237687
[21] Chen, T. et al. Workpiece positioning and error decoupling in the single-point diamond turning of freeform mirrors based on the monoscopic deflectometry. Precision Engineering 77 , 16-23 (2022).
[22] Huang, L. et al. Collimated phase measuring deflectometry. Optics and Lasers in Engineering 172, 107882 (2024). doi: 10.1016/j.optlaseng.2023.107882
[23] Niu, Z. Q. et al. Flexible one-shot geometric calibration for off-axis deflectometry. Applied Optics 59, 3819-3824 (2020). doi: 10.1364/AO.388143
[24] Xiao, Y. L., Su, X. Y. & Chen W. J. Flexible geometrical calibration for fringe-reflection 3D measurement. Optics Letters 37, 620-622 (2012). doi: 10.1364/OL.37.000620
[25] Li, C., Zhang, X. & Tu, D. W. Posed relationship calibration with parallel mirror reflection for stereo deflectometry. Optical Engineering 57, 034103 (2018).
[26] Gao, Y. Q. et al. 3D global optimization of calibration parameters of deflectometry system by using a spherical mirror, Measurement 219 , 113287 (2023).
[27] Lang, W. et al. Holistic calibration method of deflectometry by holonomic framework priors. Optics Letters 49, 702-705 (2024). doi: 10.1364/OL.513949
[28] Zhang, X. C. et al. Correction of aberration-induced phase errors in phase measuring deflectometry. Optics Letters 46, 2047-2050 (2021). doi: 10.1364/OL.415953
[29] Simon, D. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. (Hoboken, NJ, USA: Wiley, 2006).
[30] Chen, Y. N. et al. Simplifying the monoscopic deflectometric measurement by extra-facility-free workpiece positioning. Precision Engineering 87, 97-105 (2024). doi: 10.1016/j.precisioneng.2024.01.020
[31] Zhang, Z. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 1330-1334 (2000). doi: 10.1109/34.888718
[32] Agrawal, A. Extrinsic camera calibration without a direct view using spherical mirror. Proceedings of 2013 IEEE International Conference on Computer Vision. Sydney, NSW, Australia: IEEE, 2013, 2368-2375.
[33] Chen, Y. N. et al. Transition imaging phase measuring deflectometry for high-precision measurement of optical surfaces. Measurement 199, 111589 (2022). doi: 10.1016/j.measurement.2022.111589
[34] Box, G. E. P. & Tiao, G. C. Bayesian Inference in Statistical Analysis. (John Wiley & Sons, Hoboken, NJ: 2011).
[35] Lv, S. Z. & Qian, K. M. Modeling the measurement precision of fringe projection profilometry. Light: Science & Applications 12 , 257 (2023).
[36] Song, H. X. et al. Uncertainty of digital fringe projection measurement caused by structural parameters. Optics Communications 551, 130044 (2024). doi: 10.1016/j.optcom.2023.130044
[37] Rouaud, M. Probability, statistics and estimation: Propagation of uncertainties in experimental measurement. (Lulu Press, Morrisville, NC, 2017).
[38] ISO 1101: 2017. Geometrical product specifications (GPS) – geometrical tolerancing – tolerances of form. (International Organization for Standardization, Geneva, Switzerland, 2006).
[39] Pavliček, P. & Paličková, E. Measurement uncertainty of phase measuring deflectometry. Applied Optics 62, 1769-1776 (2023). doi: 10.1364/AO.483720
[40] EMVA. EMVA 1288 release 4.0. 2021. at https://www.emva.org/standardstechnology/emva-1288/emva-standard-1288-downloads-2/ URL.
[41] Thadewald, T. & Büning. H. Jarque–Bera test and its competitors for testing normality–a power comparison. Journal of Applied Statistics 34, 87-105 (2007). doi: 10.1080/02664760600994539
[42] Xu, X. X. et al. Extra-detection-free monoscopic deflectometry for the in situ measurement of freeform specular surfaces. Optics Letters 44, 4271-4274 (2019). doi: 10.1364/OL.44.004271
[43] Krystek, M. Form filtering by splines. Measurement 18, 9-15 (1996). doi: 10.1016/0263-2241(96)00039-5