[1] Smith, D. R., Pendry, J. B. & Wiltshire, M. C. K. Metamaterials and negative refractive index. Science 305, 788–792 (2004). doi: 10.1126/science.1096796
[2] Ma, H. F. & Cui, T. J. Three-dimensional broadband ground-plane cloak made of metamaterials. Nat. Commun. 1, 21 (2010). doi: 10.1038/ncomms1023
[3] Yen, T. J. et al. Terahertz magnetic response from artificial materials. Science 303, 1494–1496 (2004). doi: 10.1126/science.1094025
[4] Linden, S. et al. Magnetic response of metamaterials at 100 Terahertz. Science 306, 1351–1353 (2004). doi: 10.1126/science.1105371
[5] Zhou, J. et al. Saturation of the magnetic response of split-ring resonators at optical frequencies. Phys. Rev. Lett. 95, 223902 (2005). doi: 10.1103/PhysRevLett.95.223902
[6] Grigorenko, A. N. et al. Nanofabricated media with negative permeability at visible frequencies. Nature 438, 335–338 (2005). doi: 10.1038/nature04242
[7] Shafiei, F. et al. A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance. Nat. Nanotechnol. 8, 95–99 (2013). doi: 10.1038/nnano.2012.249
[8] Liu, N. et al. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10, 2342–2348 (2010). doi: 10.1021/nl9041033
[9] Chen, S. et al. Plasmon-induced magnetic resonance enhanced Raman spectroscopy. Nano Lett. 18, 2209–2216 (2018). doi: 10.1021/acs.nanolett.7b04385
[10] Ding, S. J. et al. Magnetic plasmon-enhanced second-harmonic generation on colloidal gold nanocups. Nano Lett. 19, 2005–2011 (2019). doi: 10.1021/acs.nanolett.9b00020
[11] Papasimakis, N. et al. The magnetic response of graphene split-ring metamaterials. Light Sci. Appl. 2, e78 (2013). doi: 10.1038/lsa.2013.34
[12] König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007). doi: 10.1126/science.1148047
[13] Zhang, H. J. et al. Topological insulators in Bi2Se3 Bi2Te3 Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5, 438–442 (2009). doi: 10.1038/nphys1270
[14] Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010). doi: 10.1103/RevModPhys.82.3045
[15] Yue, Z. J. et al. Nanometric holograms based on a topological insulator material. Nat. Commun. 8, 15354 (2017). doi: 10.1038/ncomms15354
[16] Di Pietro, P. et al. Observation of Dirac plasmons in a topological insulator. Nat. Nanotechnol. 8, 556–560 (2013). doi: 10.1038/nnano.2013.134
[17] Ou, J. Y. et al. Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2. Nat. Commun. 5, 5139 (2014).
[18] Zhao, M. et al. Visible surface plasmon modes in single Bi2Te3 nanoplate. Nano Lett. 15, 8331–8335 (2015). doi: 10.1021/acs.nanolett.5b03966
[19] Sim, S. et al. Ultra-high modulation depth exceeding 2, 400% in optically controlled topological surface plasmons. Nat. Commun. 6, 8814 (2015). doi: 10.1038/ncomms9814
[20] Yue, Z. J. et al. Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index. Sci. Adv. 2, e1501536 (2016). doi: 10.1126/sciadv.1501536
[21] Zhao, M. et al. Actively tunable visible surface plasmons in Bi2Te3 and their energy-harvesting applications. Adv. Mater. 28, 3138–3144 (2016). doi: 10.1002/adma.201506367
[22] Tang, F. et al. Comprehensive search for topological materials using symmetry indicators. Nature 566, 486–489 (2019). doi: 10.1038/s41586-019-0937-5
[23] Vergniory, M. G. et al. A complete catalogue of high-quality topological materials. Nature 566, 480–485 (2019). doi: 10.1038/s41586-019-0954-4
[24] Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003). doi: 10.1038/nature01937
[25] Ding, K. & Ning, C. Z. Metallic subwavelength-cavity semiconductor nanolasers. Light Sci. Appl. 1, e20 (2012). doi: 10.1038/lsa.2012.20
[26] Ren, M. X. et al. Linearly polarized light emission from quantum dots with plasmonic nanoantenna arrays. Nano Lett. 15, 2951–2957 (2015). doi: 10.1021/nl5047973
[27] Jiang, Y. P. et al. Landau quantization and the thickness limit of topological insulator thin films of Sb2Te3. Phys. Rev. Lett. 108, 016401 (2012). doi: 10.1103/PhysRevLett.108.016401
[28] Xia, B. et al. Indications of surface- dominated transport in single crystalline nanoflake devices of topological insulator Bi1.5Sb0.5Te1.8Se1.2. Phys. Rev. B 87, 085442 (2013).
[29] Sarychev, A. K., Shvets, G. & Shalaev, V. M. Magnetic plasmon resonance. Phys. Rev. E 73, 036609 (2006).
[30] Guo, Y. M., Shuai, Y. & Tan, H. P. Mechanism of polaritons coupling from perspective of equivalent MLC circuits model in slit arrays. Opt. Express 27, 21173–21184 (2019). doi: 10.1364/OE.27.021173
[31] Xia, F. N. et al. Two-dimensional material nanophotonics. Nat. Photonics 8, 899–907 (2014). doi: 10.1038/nphoton.2014.271
[32] Säynätjoki, A. et al. Ultra-strong nonlinear optical processes and trigonal warping in MoS2 layers. Nat. Commun. 8, 893 (2017). doi: 10.1038/s41467-017-00749-4
[33] Nan, H. Y. et al. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 8, 5738–5745 (2014). doi: 10.1021/nn500532f
[34] Liu, Y. L. et al. Layer-by-layer thinning of MoS2 by plasma. ACS Nano 7, 4202–4209 (2013). doi: 10.1021/nn400644t
[35] Liao, F. et al. Enhancing monolayer photoluminescence on optical micro/nanofibers for low-threshold lasing. Sci. Adv. 5, eaax7398 (2019). doi: 10.1126/sciadv.aax7398
[36] Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010). doi: 10.1021/nl903868w
[37] Li, J. et al. Tuning the photo-response in monolayer MoS2 by plasmonic nano-antenna. Sci. Rep. 6, 23626 (2016). doi: 10.1038/srep23626
[38] Mak, K. F. et al. Tightly bound trions in monolayer MoS2. Nat. Mater. 12, 207–211 (2013). doi: 10.1038/nmat3505
[39] Zeng, Y. et al. Highly enhanced photoluminescence of monolayer MoS2 with self‐assembled Au nanoparticle arrays. Adv. Mater. Interfaces 4, 1700739 (2017). doi: 10.1002/admi.201700739
[40] Zhang, Y. N. et al. Full-visible multifunctional aluminium metasurfaces by in situ anisotropic thermoplasmonic laser printing. Nanoscale Horiz. 4, 601–609 (2019). doi: 10.1039/C9NH00003H
[41] Taflove, A. & Hagness, S. Computational Electrodynamics: The Finite-Difference Time-Domain Method 2nd edn (Artech House, Boston, 2000).
[42] Palik, E. D. Handbook of Optical Constants of Solids 151–166 (Academic Press, New York, 1991).
[43] Li, Y. L. et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 90, 205422 (2014). doi: 10.1103/PhysRevB.90.205422