[1] Dong, P. et al. Silicon photonic devices and integrated circuits. Nanophotonics 3, 215-228 (2014). doi: 10.1515/nanoph-2013-0023
[2] Harter, T. et al. Silicon–plasmonic integrated circuits for terahertz signal generation and coherent detection. Nature Photonics 12, 625-633 (2018). doi: 10.1038/s41566-018-0237-x
[3] Ummethala, S. et al. THz-to-optical conversion in wireless communications using an ultra-broadband plasmonic modulator. Nature Photonics 13, 519-524 (2019).
[4] Sun, J. et al. Large-scale nanophotonic phased array. Nature 493, 195-199 (2013). doi: 10.1038/nature11727
[5] Rogers, C. et al. A universal 3D imaging sensor on a silicon photonics platform. Nature 590, 256-261 (2021). doi: 10.1038/s41586-021-03259-y
[6] Trocha, P. et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science 359, 887-891 (2018). doi: 10.1126/science.aao3924
[7] Riemensberger, J. et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature 581, 164-170 (2020). doi: 10.1038/s41586-020-2239-3
[8] Ranacher, C. et al. Mid-infrared absorption gas sensing using a silicon strip waveguide. Sensors and Actuators A:Physical 277, 117-123 (2018). doi: 10.1016/j.sna.2018.05.013
[9] Fernández Gavela, A. et al. Last advances in silicon-based optical biosensors. Sensors 16, 285 (2016). doi: 10.3390/s16030285
[10] Steglich, P. et al. Optical biosensors based on silicon-on-insulator ring resonators: a review. Molecules 24, 519 (2019). doi: 10.3390/molecules24030519
[11] Milvich, J. et al. Integrated phase-sensitive photonic sensors: a system design tutorial. Advances in Optics and Photonics 13, 584-642 (2021). doi: 10.1364/AOP.413399
[12] Kohler, D. et al. Biophotonic sensors with integrated Si3N4-organic hybrid (SiNOH) lasers for point-of-care diagnostics. Light:Science & Applications 10, 64 (2021).
[13] Lim, A. E. J. et al. Review of silicon photonics foundry efforts. IEEE Journal of Selected Topics in Quantum Electronics 20, 405-416 (2014). doi: 10.1109/JSTQE.2013.2293274
[14] Artundo, I. Blossoming photonic foundries. 2018. at https://www.electrooptics.com/analysis-opinion/blossoming-photonic-foundries.
[15] Snyder, B., Corbett, B. & O’Brien, P. Hybrid integration of the wavelength-tunable laser with a silicon photonic integrated circuit. Journal of Lightwave Technology 31, 3934-3942 (2013). doi: 10.1109/JLT.2013.2276740
[16] Gomez-Reino, C. et al. Design of GRIN optical components for coupling and interconnects. Laser & Photonics Review 2, 203-215 (2008).
[17] Gilsdorf, R. W. & Palais, J. C. Single-mode fiber coupling efficiency with graded-index rod lenses. Applied Optics 33, 3440-3445 (1994). doi: 10.1364/AO.33.003440
[18] Zickar, M. et al. MEMS compatible micro-GRIN lenses for fiber to chip coupling of light. Optics Express 14, 4237-4249 (2006).
[19] Duperron, M. et al. Hybrid integration of laser source on silicon photonic integrated circuit for low-cost interferometry medical device. Proceedings of SPIE 10109, Optical Interconnects XVII. San Francisco: SPIE, 2017.
[20] Dietrich, P. I. et al. In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration. Nature Photonics 12, 241-247 (2018). doi: 10.1038/s41566-018-0133-4
[21] Lamprecht, T. et al. Passive alignment of optical elements in a printed circuit board. 56th Electronic Components and Technology Conference 2006. San Diego: IEEE, 2006.
[22] Schneider, S. et al. Optical coherence tomography system mass-producible on a silicon photonic chip. Optics Express 24, 1573-1586 (2016). doi: 10.1364/OE.24.001573
[23] SQS-Fiberoptics. V-Grooves and fiber arrays. at https://www.sqs-fiberoptics.com/images/pdf-soubory/v-grooves-fiber-optic-arrays.pdf.
[24] Trappen, M. et al. 3D-printed optical probes for wafer-level testing of photonic integrated circuits. Optics Express 28, 37996-38007 (2020).
[25] Scarcella, C. et al. Pluggable single-mode fiber-array-to-PIC coupling using micro-lenses. IEEE Photonics Technology Letters 29, 1943-1946 (2017). doi: 10.1109/LPT.2017.2757082
[26] Phelan, R. et al. −40°C < T < 95°C mode-hop-free operation of uncooled AlGaInAs-MQW discrete-mode laser diode with emission at λ = 1.3 µm. Electronics Letters 45, 43-45 (2009).
[27] Hu, M. H. et al. Measurement of very low residual reflections in lensed-fiber pigtailed semiconductor optical amplifier. Optical Amplifiers and Their Applications, paper WA4. Budapest: OSA, 2005.
[28] Taillaert, D. et al. A compact two-dimensional grating coupler used as a polarization splitter. IEEE Photonics Technology Letters 15, 1249-1251 (2003). doi: 10.1109/LPT.2003.816671
[29] Xiao, Z. et al. Bandwidth analysis of waveguide grating coupler. Optics Express 21, 5688-5700 (2013). doi: 10.1364/OE.21.005688
[30] Hong, J. X. et al. A high efficiency silicon nitride waveguide grating coupler with a multilayer bottom reflector. Scientific Reports 9, 12988 (2019). doi: 10.1038/s41598-019-49324-5
[31] He, A. et al. Low loss, large bandwidth fiber-chip edge couplers based on silicon-on-insulator Platform. Journal of Lightwave Technology 38, 4780-4786 (2020). doi: 10.1109/JLT.2020.2995544
[32] Peng, B. et al. A CMOS compatible monolithic fiber attach solution with reliable performance and self-alignment. 2020 Optical Fiber Communications Conference and Exhibition (OFC). San Diego: IEEE, 2020.
[33] Barwicz, T. et al. Integrated metamaterial interfaces for self-aligned fiber-to-chip coupling in volume manufacturing. IEEE Journal of Selected Topics in Quantum Electronics 25, 1-13 (2019).
[34] Billah, M. R. et al. Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding. Optica 5, 876-883 (2018). doi: 10.1364/OPTICA.5.000876
[35] Blaicher, M. et al. Hybrid multi-chip assembly of optical communication engines by in situ 3D nano-lithography. Light:Science & Applications 9, 71 (2020).
[36] Hahn, V. et al. Light-sheet 3D microprinting via two-colour two-step absorption. Nature Photonics 16, 784-791 (2022). doi: 10.1038/s41566-022-01081-0
[37] Somers, P. et al. Rapid, continuous projection multi-photon 3D printing enabled by spatiotemporal focusing of femtosecond pulses. Light:Science & Applications 10, 199 (2021).
[38] Precitec GmbH & Co. KG. Chromatic confocal technology. at https://www.precitec.com/optical-3d-metrology/technology/chromatic-confocal-sensors.
[39] Schmidt, S. et al. Wave-optical modeling beyond the thin-element-approximation. Optics Express 24, 30188-30200 (2016). doi: 10.1364/OE.24.030188