[1] |
Correa-Baena, J. P. et al. Promises and challenges of perovskite solar cells. Science 358, 739–744 (2017). doi: 10.1126/science.aam6323 |
[2] |
Park, N. G. et al. Towards stable and commercially available perovskite solar cells. Nat. Energy 1, 16152 (2016). doi: 10.1038/nenergy.2016.152 |
[3] |
Rajagopal, A., Yao, K. & Jen, A. K. Y. Toward perovskite solar cell commercialization: a perspective and research roadmap based on interfacial engineering. Adv. Mater. 30, 1800455 (2018). doi: 10.1002/adma.201800455 |
[4] |
Brenner, T. M. et al. Hybrid organic—inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 1, 15007 (2016). doi: 10.1038/natrevmats.2015.7 |
[5] |
Doherty, T. A. S. et al. Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites. Nature 580, 360–366 (2020). doi: 10.1038/s41586-020-2184-1 |
[6] |
Pazos-Outón, L. M., Xiao, T. P. & Yablonovitch, E. Fundamental efficiency limit of lead iodide perovskite solar cells. J. Phys. Chem. Lett. 9, 1703–1711 (2018). doi: 10.1021/acs.jpclett.7b03054 |
[7] |
Luo, D. Y. et al. Minimizing non-radiative recombination losses in perovskite solar cells. Nat. Rev. Mater. 5, 44–60 (2020). doi: 10.1038/s41578-019-0151-y |
[8] |
Park, B. W. & Seok, S. I. Intrinsic instability of inorganic-organic hybrid halide perovskite materials. Adv. Mater. 31, 1805337 (2019). doi: 10.1002/adma.201805337 |
[9] |
deQuilettes, D. W. et al. Charge-carrier recombination in halide perovskites. Chem. Rev. 119, 11007–11019 (2019). doi: 10.1021/acs.chemrev.9b00169 |
[10] |
Ni, Z. Y. et al. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367, 1352–1358 (2020). doi: 10.1126/science.aba0893 |
[11] |
Chen, B. et al. Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48, 3842–3867 (2019). doi: 10.1039/C8CS00853A |
[12] |
Aydin, E., De Bastiani, M. & De Wolf, S. Defect and contact passivation for perovskite solar cells. Adv. Mater. 31, 1900428 (2019). doi: 10.1002/adma.201900428 |
[13] |
Zheng, X. P. et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2, 17102 (2017). doi: 10.1038/nenergy.2017.102 |
[14] |
Ono, L. K., Liu, S. Z. & Qi, Y. B. Reducing detrimental defects for high-performance metal halide perovskite solar cells. Angew. Chem. Int. Ed. 59, 6676–6698 (2020). doi: 10.1002/anie.201905521 |
[15] |
Bi, D. Q. et al. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 1, 16142 (2016). doi: 10.1038/nenergy.2016.142 |
[16] |
Bai, S. et al. Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 571, 245–250 (2019). doi: 10.1038/s41586-019-1357-2 |
[17] |
Yavari, M. et al. Carbon nanoparticles in high-performance perovskite solar cells. Adv. Energy Mater. 8, 1702719 (2018). doi: 10.1002/aenm.201702719 |
[18] |
Li, S. S. et al. Intermixing-seeded growth for high-performance planar heterojunction perovskite solar cells assisted by precursor-capped nanoparticles. Energy Environ. Sci. 9, 1282–1289 (2016). doi: 10.1039/C5EE03229F |
[19] |
Tiong, V. T. et al. Octadecylamine-functionalized single-walled carbon nanotubes for facilitating the formation of a monolithic perovskite layer and stable solar cells. Adv. Funct. Mater. 28, 1705545 (2018). doi: 10.1002/adfm.201705545 |
[20] |
Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010). doi: 10.1038/nmat2629 |
[21] |
Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics 8, 95–103 (2014). doi: 10.1038/nphoton.2013.238 |
[22] |
Cushing, S. K. & Wu, N. Q. Progress and perspectives of plasmon-enhanced solar energy conversion. J. Phys. Chem. Lett. 7, 666–675 (2016). doi: 10.1021/acs.jpclett.5b02393 |
[23] |
Huang, X. Y. et al. Efficient plasmon-hot electron conversion in Ag-CsPbBr3 hybrid nanocrystals. Nat. Commun. 10, 1163 (2019). doi: 10.1038/s41467-019-09112-1 |
[24] |
Carretero-Palacios, S., Jiménez-Solano, A. & Míguez, H. Plasmonic nanoparticles as light-harvesting enhancers in perovskite solar cells: a user's guide. ACS Energy Lett. 1, 323–331 (2016). doi: 10.1021/acsenergylett.6b00138 |
[25] |
Saliba, M. et al. Plasmonic-induced photon recycling in metal halide perovskite solar cells. Adv. Funct. Mater. 25, 5038–5046 (2015). doi: 10.1002/adfm.201500669 |
[26] |
Tan, S. J. et al. Plasmonic coupling at a metal/semiconductor interface. Nat. Photonics 11, 806–812 (2017). doi: 10.1038/s41566-017-0049-4 |
[27] |
Ye, T. et al. Performance enhancement of tri-cation and dual-anion mixed perovskite solar cells by Au@SiO2 nanoparticles. Adv. Funct. Mater. 27, 1606545 (2017). doi: 10.1002/adfm.201606545 |
[28] |
Salvador, M. et al. Electron accumulation on metal nanoparticles in plasmon-enhanced organic solar cells. ACS Nano 6, 10024–10032 (2012). doi: 10.1021/nn303725v |
[29] |
Wang, F. et al. Phenylalkylamine passivation of organolead halide perovskites enabling high-efficiency and air-stable photovoltaic cells. Adv. Mater. 28, 9986–9992 (2016). doi: 10.1002/adma.201603062 |
[30] |
Qian, K. et al. Functionalized shell-isolated nanoparticle-enhanced Raman spectroscopy for selective detection of trinitrotoluene. Analyst 137, 4644–4646 (2012). doi: 10.1039/c2an35947b |
[31] |
Turkevich, J., Stevenson, P. C. & Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11, 55–75 (1951). doi: 10.1039/df9511100055 |
[32] |
Li, S. B. et al. Unravelling the mechanism of ionic fullerene passivation for efficient and stable methylammonium-free perovskite solar cells. ACS Energy Lett. 5, 2015–2022 (2020). doi: 10.1021/acsenergylett.0c00871 |
[33] |
Wu, S. F. et al. Modulation of defects and interfaces through alkylammonium interlayer for efficient inverted perovskite solar cells. Joule 4, 1248–1262 (2020). doi: 10.1016/j.joule.2020.04.001 |
[34] |
Choi, H. et al. Versatile surface plasmon resonance of carbon-dot-supported silver nanoparticles in polymer optoelectronic devices. Nat. Photonics 7, 732–738 (2013). doi: 10.1038/nphoton.2013.181 |
[35] |
Ahn, N. et al. Trapped charge-driven degradation of perovskite solar cells. Nat. Commun. 7, 13422 (2016). doi: 10.1038/ncomms13422 |
[36] |
Tress, W. et al. Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells. Energy Environ. Sci. 11, 151–165 (2018). doi: 10.1039/C7EE02415K |
[37] |
Khenkin, M. V. et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5, 35–49 (2020). doi: 10.1038/s41560-019-0529-5 |
[38] |
Wang, J. et al. Reducing surface recombination velocities at the electrical contacts will improve perovskite photovoltaics. ACS Energy Lett. 4, 222–227 (2019). doi: 10.1021/acsenergylett.8b02058 |
[39] |
de Quilettes, D. W. et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348, 683–686 (2015). doi: 10.1126/science.aaa5333 |
[40] |
Li, J. J. et al. Microscopic investigation of grain boundaries in organolead halide perovskite solar cells. ACS Appl. Mater. Interfaces 7, 28518–28523 (2015). doi: 10.1021/acsami.5b09801 |
[41] |
Chakrabartty, J. et al. Improved photovoltaic performance from inorganic perovskite oxide thin films with mixed crystal phases. Nat. Photonics 12, 271–276 (2018). doi: 10.1038/s41566-018-0137-0 |
[42] |
Dvořák, P. et al. Control and near-field detection of surface plasmon interference patterns. Nano Lett. 13, 2558–2563 (2013). doi: 10.1021/nl400644r |
[43] |
Qin, T. X. et al. Quantification of electron accumulation at grain boundaries in perovskite polycrystalline films by correlative infrared-spectroscopic nanoimaging and Kelvin probe force microscopy. Light. Sci. Appl. 10, 84 (2021). doi: 10.1038/s41377-021-00524-7 |
[44] |
Pockett, A. et al. Characterization of planar lead halide perovskite solar cells by impedance spectroscopy, open-circuit photovoltage decay, and intensity-modulated photovoltage/photocurrent spectroscopy. J. Phys. Chem. C 119, 3456–3465 (2015). doi: 10.1021/jp510837q |
[45] |
Zhao, Y. C. et al. Quantification of light-enhanced ionic transport in lead iodide perovskite thin films and its solar cell applications. Light. Sci. Appl. 6, e16243 (2017). doi: 10.1038/lsa.2016.243 |
[46] |
Shockley, W. & Read, W. T. Jr. Statistics of the recombinations of holes and electrons. Phys. Rev. J. Arch. 87, 835–842 (1952). doi: 10.1103/PhysRev.87.835 |
[47] |
Manser, J. S. & Kamat, P. V. Band filling with free charge carriers in organometal halide perovskites. Nat. Photonics 8, 737–743 (2014). doi: 10.1038/nphoton.2014.171 |
[48] |
Johnston, M. B. & Herz, L. M. Hybrid perovskites for photovoltaics: charge-carrier recombination, diffusion, and radiative efficiencies. Acc. Chem. Res. 49, 146–154 (2016). doi: 10.1021/acs.accounts.5b00411 |
[49] |
Rehman, W. et al. Charge-carrier dynamics and mobilities in formamidinium lead mixed-halide perovskites. Adv. Mater. 27, 7938–7944 (2015). doi: 10.1002/adma.201502969 |
[50] |
Yang, Y. et al. Observation of a hot-phonon bottleneck in lead-iodide perovskites. Nat. Photonics 10, 53–59 (2016). doi: 10.1038/nphoton.2015.213 |
[51] |
Fu, J. H. et al. Hot carrier cooling mechanisms in halide perovskites. Nat. Commun. 8, 1300 (2017). doi: 10.1038/s41467-017-01360-3 |
[52] |
Price, M. B. et al. Hot-carrier cooling and photoinduced refractive index changes in organic-inorganic lead halide perovskites. Nat. Commun. 6, 8420 (2015). doi: 10.1038/ncomms9420 |
[53] |
Ma, X. C. et al. Energy transfer in plasmonic photocatalytic composites. Light. Sci. Appl. 5, e16017 (2016). doi: 10.1038/lsa.2016.17 |
[54] |
Li, J. T. et al. Plasmon-induced resonance energy transfer for solar energy conversion. Nat. Photonics 9, 601–607 (2015). doi: 10.1038/nphoton.2015.142 |
[55] |
Sergeev, A. A. et al. Tailoring spontaneous infrared emission of HgTe quantum dots with laser-printed plasmonic arrays. Light. Sci. Appl. 9, 16 (2020). doi: 10.1038/s41377-020-0247-6 |
[56] |
Jia, C. C. et al. Interface-engineered plasmonics in metal/semiconductor heterostructures. Adv. Energy Mater. 6, 1600431 (2016). doi: 10.1002/aenm.201600431 |
[57] |
Häkkinen, H., Barnett, R. N. & Landman, U. Electronic structure of passivated Au38(SCH3)24 nanocrystal. Phys. Rev. Lett. 82, 3264–3267 (1999). doi: 10.1103/PhysRevLett.82.3264 |
[58] |
Hu, C. Y. et al. Surface plasmon enabling nitrogen fixation in pure water through a dissociative mechanism under mild conditions. J. Am. Chem. Soc. 141, 7807–7814 (2019). doi: 10.1021/jacs.9b01375 |
[59] |
Sherkar, T. S. et al. Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions. ACS Energy Lett. 2, 1214–1222 (2017). doi: 10.1021/acsenergylett.7b00236 |