[1] Matrecano, M., Paturzo, M. & Ferraro, P. Extended focus imaging in digital holographic microscopy: a review. Optical Engineering 53, 112317 (2014). doi: 10.1117/1.OE.53.11.112317
[2] Tahara, T. et al. Digital holography and its multidimensional imaging applications: a review. Microscopy 67, 55-67 (2018). doi: 10.1093/jmicro/dfy007
[3] Blinder, D. et al. Signal processing challenges for digital holographic video display systems. Signal Process. Image 70, 114-130 (2019). doi: 10.1016/j.image.2018.09.014
[4] Kress, B. C. Optical Architectures for Augmented-, Virtual-, and Mixed-Reality Headsets. 270 pp. (Bellingham: SPIE, 2020).
[5] Yoshikawa, H. & Takei, K. Development of a compact direct fringe printer for computer-generated holograms. in Practical Holography XVⅢ: Materials and Applications. 5290 (San Jose: SPIE, 2004), 114-121.
[6] Jeon, H. et al. High-resolution binary hologram printing methods. in Practical Holography XXXIV: Displays, Materials, and Applications. 11306 (San Francisco: SPIE, 2020), 122-127.
[7] Duan, X. et al. Full-color see-through near-eye holographic display with 80£ field of view and an expanded eye-box. Optics Express 28, 31316-31329 (2020). doi: 10.1364/OE.399359
[8] Kress, B. C. & Cummings, W. J. Optical architecture of HoloLens mixed reality headset. in Digital Optical Technologies 2017. 10335 (SPIE, 2017), 124-133.
[9] Häussler, R. et al. Large real-time holographic displays: from prototypes to a consumer product. 2009.
[10] Jiang, Q., Jin, G. & Cao, L. When metasurface meets hologram: principle and advances. Advances in Optics and Photonics 11, 518-576 (2019). doi: 10.1364/AOP.11.000518
[11] Finke, G., Kujawińska, M. & Kozacki, T. Visual perception in multi SLM holographic displays. Applied Optics 54, 3560-3568 (2015). doi: 10.1364/AO.54.003560
[12] Shi, L. et al. Near-eye Light Field Holographic Rendering with Spherical Waves for Wide Field of View Interactive 3D Computer Graphics. ACM Trans. Graph. 36, 236ú:1-236:17 (2017).
[13] Chlipala, M. & Kozacki, T. Color LED DMD holographic display with high resolution across large depth. Optics Letters 44, 4255-4258 (2019). doi: 10.1364/OL.44.004255
[14] Choo, H.-G. et al. Fourier digital holography of real scenes for 360£ tabletop holographic displays. Applied Optics 58, G96-G103 (2019). doi: 10.1364/AO.58.000G96
[15] Cuche, E., Marquet, P. & Depeursinge, C. Simultaneous amplitude-contrast and quantitative phasecontrast microscopy by numerical reconstruction of Fresnel off-axis holograms. Applied Optics 38, 6994-7001 (1999). doi: 10.1364/AO.38.006994
[16] Murata, S. & Yasuda, N. Potential of digital holography in particle measurement. Optics & Laser Technology 32, 567-574 (2000).
[17] Xu, W. et al. Digital in-line holography for biological applications. Proceedings of the National Academy of Sciences of the United States of America 98, 11301-11305 (2001). doi: 10.1073/pnas.191361398
[18] Javidi, B. & Tajahuerce, E. Three-dimensional object recognition by use of digital holography. Optics Letters 25, 610-612 (2000). doi: 10.1364/OL.25.000610
[19] Noda, T., Kawata, S. & Minami, S. Three-dimensional phase-contrast imaging by a computed-tomography microscope. Applied optics 31, 670-674 (1992). doi: 10.1364/AO.31.000670
[20] Paturzo, M. et al. Synthesis and display of dynamic holographic 3D scenes with real-world objects. Optics Express 18, 8806-8815 (2010). doi: 10.1364/OE.18.008806
[21] Clemente, P. et al. Single-pixel digital ghost holography. Physical Review A 86, 041803 (2012). doi: 10.1103/PhysRevA.86.041803
[22] Kozacki, T. et al. Fourier horizontal parallax only computer and digital holography of large size. Optics Express 29, 18173-18191 (2021). doi: 10.1364/OE.421186
[23] Kozacki, T. et al. Single-shot digital multiplexed holography for the measurement of deep shapes. Optics Express 29, 21965-21977 (2021). doi: 10.1364/OE.428419
[24] Goodman, J. W. Introduction to Fourier Optics (ed Goodman, J. W.) (New York: W. H. Freeman and Company, Aug. 17, 2017).
[25] Tsang, P., Poon, T.-C. & Wu, Y. Review of fast methods for point-based computer-generated holography. Photonics Research 6, 837-846 (2018). doi: 10.1364/PRJ.6.000837
[26] Shimobaba, T., Masuda, N. & Ito, T. Simple and fast calculation algorithm for computer-generated hologram with wavefront recording plane. Optics Letters 34, 3133-3135 (2009). doi: 10.1364/OL.34.003133
[27] Kang, H., Yamaguchi, T. & Yoshikawa, H. Accurate phase-added stereogram to improve the coherent stereogram. Applied Optics 47, D44-D54 (2008). doi: 10.1364/AO.47.000D44
[28] Kim, S.-C. & Kim, E. -S. Effective generation of digital holograms of three-dimensional objects using a novel look-up table method. Applied Optics 47, D55-D62 (2008). doi: 10.1364/AO.47.000D55
[29] Blinder, D. et al. Analytic computation of line-drawn objects in computer generated holography. Optics Express 28, 31226-31240 (2020). doi: 10.1364/OE.405179
[30] Blinder, D., Nishitsuji, T. & Schelkens, P. RealTime Computation of 3D Wireframes in ComputerGenerated Holography. IEEE Transactions on Image Processing 30, 9418-9428 (2021). doi: 10.1109/TIP.2021.3125495
[31] Nishitsuji, T. et al. GPU-accelerated calculation of computer-generated holograms for line-drawn objects. Optics Express 29, 12849-12866 (2021). doi: 10.1364/OE.421230
[32] Pan, Y. et al. Fast polygon-based method for calculating computer-generated holograms in threedimensional display. Applied Optics 52, A290-A299 (2013). doi: 10.1364/AO.52.00A290
[33] Zhang, Y.-P. et al. Fast generation of full analytical polygon-based computer-generated holograms. Optics Express 26, 19206-19224 (2018). doi: 10.1364/OE.26.019206
[34] Lee, W. et al. Semi-analytic texturing algorithm for polygon computer-generated holograms. Optics Express 22, 31180-31191 (2014). doi: 10.1364/OE.22.031180
[35] Ji, Y.-M., Yeom, H. & Park, J. -H. Efficient texture mapping by adaptive mesh division in mesh-based computer generated hologram. Optics Express 24, 28154-28169 (2016). doi: 10.1364/OE.24.028154
[36] Symeonidou, A. et al. Computer-generated holograms by multiple wavefront recording plane method with occlusion culling. Optics Express 23, 22149-22161 (2015). doi: 10.1364/OE.23.022149
[37] Symeonidou, A., Blinder, D. & Schelkens, P. Colour computer-generated holography for point clouds utilizing the Phong illumination model. Optics Express 26, 10282-10298 (2018). doi: 10.1364/OE.26.010282
[38] Symeonidou, A. et al. Speckle noise reduction for computer generated holograms of objects with diffuse surfaces. in Optics, Photonics and Digital Technologies for Imaging Applications IV. 9896 (Brussels: SPIE, 2016), 67-76.
[39] User “artmaxwell”. Porcelain Teacup. (2021). at https://www.turbosquid.com/3d-models/free-max-mode-porcelain-teacup/486730.
[40] User “macrovector”. Seamless floral pattern on uniform background. (2021). at https://www.freepik.com/vectors/background.
[41] Shimobaba, T. et al. Computational wave optics library for C++: CWO++ library. Computer Physics Communications 183, 1124-1138 (2012). doi: 10.1016/j.cpc.2011.12.027
[42] Muffoletto, R. P., Tyler, J. M. & Tohline, J. E. Shifted Fresnel diffraction for computational holography. Optics Express 15, 5631-5640 (2007). doi: 10.1364/OE.15.005631
[43] Matsushima, K., Schimmel, H. & Wyrowski, F. Fast calculation method for optical diffraction on tilted planes by use of the angular spectrum of plane waves. J. Opt. Soc. Am. A 20, 1755-1762 (2003). doi: 10.1364/JOSAA.20.001755
[44] Okada, N. et al. Band-limited double-step Fresnel diffraction and its application to computer-generated holograms. Optics Express 21, 9192-9197 (2013). doi: 10.1364/OE.21.009192
[45] Chang, C. et al. Simple calculation of a computergenerated hologram for lensless holographic 3D projection using a nonuniform sampled wavefront recording plane. Applied Optics 55, 7988-7996 (2016). doi: 10.1364/AO.55.007988
[46] Matsushima, K. & Nakahara, S. Extremely highdefinition full-parallax computer-generated hologram created by the polygon-based method. Applied Optics 48, H54-H63 (2009). doi: 10.1364/AO.48.000H54
[47] Nishi, H. & Matsushima, K. Rendering of specular curved objects in polygon-based computer holography. Applied Optics 56, F37-F44 (2017). doi: 10.1364/AO.56.000F37
[48] Matsushima, K. Introduction to Computer Holography: Creating Computer-Generated Holograms as the Ultimate 3D Image (Springer Nature, 2020).
[49] Matsushima, K., Nakamura, M. & Nakahara, S. Silhouette method for hidden surface removal in computer holography and its acceleration using the switch-back technique. Optics Express 22, 24450-24465 (2014). doi: 10.1364/OE.22.024450
[50] Blinder, D. et al. Photorealistic computer generated holography with global illumination and path tracing. Optics Letters 46, 2188-2191 (2021). doi: 10.1364/OL.422159
[51] Website of the INTERFERE project ERC-CG-2013-PE7, European Research Council consolidator grant http://erc-interfere.eu.
[52] Ichikawa, T., Yamaguchi, K. & Sakamoto, Y. Realistic expression for full-parallax computer-generated holograms with the ray-tracing method. Applied Optics 52, A201-A209 (2013). doi: 10.1364/AO.52.00A201
[53] Sun, M. et al. Acceleration and expansion of a photorealistic computer-generated hologram using backward ray tracing and multiple off-axis wavefront recording plane methods. Optics Express 28, 34994-35005 (2020). doi: 10.1364/OE.410314
[54] Gilles, A. et al. Hybrid approach for fast occlusion processing in computer-generated hologram calculation. Applied Optics 55, 5459-5470 (2016). doi: 10.1364/AO.55.005459
[55] Shimobaba, T. & Ito, T. Fast generation of computergenerated holograms using wavelet shrinkage. Optics Express 25, 77-87 (2017). doi: 10.1364/OE.25.000077
[56] Pi, D. et al. Acceleration of computer-generated hologram using wavefront-recording plane and lookup table in three-dimensional holographic display. Optics Express 28, 9833-9841 (2020). doi: 10.1364/OE.385388
[57] Wang, Z. et al. Resolution priority holographic stereogram based on integral imaging with enhanced depth range. Optics Express 27, 2689-2702 (2019). doi: 10.1364/OE.27.002689
[58] Takaki, Y. & Ikeda, K. Simplified calculation method for computer-generated holographic stereograms from multi-view images. Optics Express 21, 9652-9663 (2013). doi: 10.1364/OE.21.009652
[59] Yamaguchi, M. et al. Phase-added stereogram: calculation of hologram using computer graphics technique. Proceedings of SPIE 1914, 25-31 (1993). doi: 10.1117/12.155027
[60] Kang, H. et al. Compensated phase-added stereogram for real-time holographic display. Optical Engineering 46, 11-11-11 (2007).
[61] Padmanaban, N., Peng, Y. & Wetzstein, G. Holographic Near-Eye Displays Based on Overlap-Add Stereograms. ACM Trans. Graph. 38, (2019).
[62] Kim, H. G., Jeong, H. & Ro, Y. M. Acceleration of the calculation speed of computer-generated holograms using the sparsity of the holographic fringe pattern for a 3D object. Optics Express 24, 25317-25328 (2016). doi: 10.1364/OE.24.025317
[63] Kim, H. G. & Ro, Y. M. Ultrafast layer based computer-generated hologram calculation with sparse template holographic fringe pattern for 3-D object. Optics Express 25, 30418-30427 (2017). doi: 10.1364/OE.25.030418
[64] Jia, J., Si, J. & Chu, D. Fast two-step layer-based method for computer generated hologram using subsparse 2D fast Fourier transform. Optics Express 26, 17487-17497 (2018). doi: 10.1364/OE.26.017487
[65] Arai, D. et al. An accelerated hologram calculation using the wavefront recording plane method and wavelet transform. Optics Communications 393, 107-112 (2017). doi: 10.1016/j.optcom.2017.02.038
[66] Blinder, D. & Schelkens, P. Accelerated computer generated holography using sparse bases in the STFT domain. Optics Express 26, 1461-1473 (2018). doi: 10.1364/OE.26.001461
[67] Blinder, D. Direct calculation of computer-generated holograms in sparse bases. Optics Express 27, 23124-23137 (2019). doi: 10.1364/OE.27.023124
[68] Lucente, M. E. Interactive computation of holograms using a look-up table. Journal of Electronic Imaging 2, 28-34 (1993). doi: 10.1117/12.133376
[69] Pan, Y. et al. Fast CGH computation using S-LUT on GPU. Optics Express 17, 18543-18555 (2009). doi: 10.1364/OE.17.018543
[70] Jia, J. et al. Reducing the memory usage for effectivecomputer-generated hologram calculation using compressed look-up table in full-color holographic display. Applied Optics 52, 1404-1412 (2013). doi: 10.1364/AO.52.001404
[71] Yang, Z. et al. A new method for producing computer generated holograms. Journal of Optics 14, 095702 (2012). doi: 10.1088/2040-8978/14/9/095702
[72] Jiao, S., Zhuang, Z. & Zou, W. Fast computer generated hologram calculation with a mini look-up table incorporated with radial symmetric interpolation. Optics Express 25, 112-123 (2017). doi: 10.1364/OE.25.000112
[73] Nishitsuji, T. et al. Fast calculation of computergenerated hologram of line-drawn objects without FFT. Optics Express 28, 15907-15924 (2020). doi: 10.1364/OE.389778
[74] Kim, S.-C. et al. Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table. Optics Express 21, 11568-11584 (2013). doi: 10.1364/OE.21.011568
[75] Dong, X.-B., Kim, S.-C. & Kim, E. -S. MPEG-based novel look-up table for rapid generation of video holograms of fast-moving three-dimensional objects. Optics Express 22, 8047-8067 (2014). doi: 10.1364/OE.22.008047
[76] Kwon, M.-W., Kim, S.-C. & Kim, E. -S. Threedirectional motion-compensation mask-based novel look-up table on graphics processing units for videorate generation of digital holographic videos of threedimensional scenes. Applied Optics 55, A22-A31 (2016). doi: 10.1364/AO.55.000A22
[77] Cao, H.-K. & Kim, E. -S. Faster generation of holographic videos of objects moving in space using a spherical hologram-based 3-D rotational motion compensation scheme. Optics Express 27, 29139-29157 (2019). doi: 10.1364/OE.27.029139
[78] Symeonidou, A. et al. Efficient holographic video generation based on rotational transformation of wavefields. Optics Express 27, 37383-37399 (2019). doi: 10.1364/OE.27.037383
[79] Shimobaba, T. et al. Motion Parallax Holograms Generated from an Existing Hologram. Applied Sciences 11, (2021).
[80] Birnbaum, T. et al. Object-based digital hologram segmentation and motion compensation. Optics Express 28, 11861-11882 (2020). doi: 10.1364/OE.385565
[81] Sitzmann, V. et al. Light field networks: Neural scene representations with single-evaluation rendering. Advances in Neural Information Processing Systems 34, (2021).
[82] Voulodimos, A. et al. Deep learning for computer vision: A brief review. Computational intelligence and neuroscience 2018 (2018).
[83] Shimobaba, T. et al. Deep-learning-assisted hologram calculation via low-sampling holograms. in 2019 8th International Congress on Advanced Applied Informatics (ⅡAI-AAI) (2019), 936-941.
[84] Shimobaba, T. et al. Dynamic-range compression scheme for digital hologram using a deep neural network. Optics letters 44, 3038-3041 (2019). doi: 10.1364/OL.44.003038
[85] Shi, L. et al. Towards real-time photorealistic 3D holography with deep neural networks. Nature 591, 234-239 (2021). doi: 10.1038/s41586-020-03152-0
[86] Horisaki, R. et al. Three-dimensional deeply generated holography [Invited]. Applied Optics 60, A323-A328 (2021). doi: 10.1364/AO.404151
[87] Jiao, S. et al. Compression of phase-only holograms with JPEG standard and deep learning. Applied Sciences 8, 1258 (2018). doi: 10.3390/app8081258
[88] Park, D.-Y. & Park, J. -H. Hologram conversion for speckle free reconstruction using light field extraction and deep learning. Optics Express 28, 5393-5409 (2020). doi: 10.1364/OE.384888
[89] Ishii, Y. et al. Optimization of phase-only holograms calculated with scaled diffraction calculation through deep neural networks. Applied Physics B 128, 1-11 (2022).
[90] Peng, Y. et al. Neural holography with camera-in-theloop training. ACM Transactions on Graphics (TOG) 39, 1-14 (2020).
[91] Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (Cambridge: MIT Press, 2016).
[92] Horisaki, R., Takagi, R. & Tanida, J. Deep-learninggenerated holography. Applied Optics 57, 3859-3863 (2018). doi: 10.1364/AO.57.003859
[93] Eybposh, M. H. et al. DeepCGH: 3D computergenerated holography using deep learning. Optics Express 28, 26636-26650 (2020). doi: 10.1364/OE.399624
[94] Wu, J. et al. High-speed computer-generated holography using an autoencoder-based deep neural network. Optics Letters 46, 2908-2911 (2021). doi: 10.1364/OL.425485
[95] Gerchberg, R. W. & Saxton, W. O. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237-246 (1972).
[96] Chakravarthula, P. et al. Wirtinger holography for near-eye displays. ACM Transactions on Graphics (TOG) 38, 1-13 (2019).
[97] Goi, H., Komuro, K. & Nomura, T. Deep-learningbased binary hologram. Applied Optics 59, 7103-7108 (2020). doi: 10.1364/AO.393500
[98] Dai, P. et al. Acceleration of fully computed hologram stereogram using lookup table and wavefront recording plane methods. Applied Optics 60, 1814-1820 (2021). doi: 10.1364/AO.415289
[99] Wang, Y. et al. Hardware implementations of computergenerated holography: a review. Optical Engineering 59, 1-30 (2020).
[100] Ikawa, S. et al. Real-time color holographic video reconstruction using multiple-graphics processing unit cluster acceleration and three spatial light modulators. Chinese Optics Letters 18, 010901 (2020). doi: 10.3788/COL202018.010901
[101] Christopher, P. J. et al. HoloGen: An open-source toolbox for high-speed hologram generation. Computer Physics Communications 270, 108139 (2022). doi: 10.1016/j.cpc.2021.108139
[102] Blinder, D. & Schelkens, P. Accelerating phase-added stereogram calculations by coefficient grouping for digital holography. in Proceedings of SPIE 11353, Optics, Photonics and Digital Technologies for Imaging Applications VI (Online Only, France: SPIE, 2020), 1–10.
[103] Blinder, D. & Schelkens, P. Phase added substereograms for accelerating computer generated holography. Optics Express 28, 16924-16934 (2020). doi: 10.1364/OE.388881
[104] Zhao, Y. et al. Accurate calculation of computergenerated holograms using angular-spectrum layeroriented method. Optics Express 23, 25440-25449 (2015). doi: 10.1364/OE.23.025440
[105] Lee, B. et al. Wide-angle speckleless DMD holographic display using structured illumination with temporal multiplexing. Optics Letters 45, 2148-2151 (2020). doi: 10.1364/OL.390552
[106] Dong, D. et al. Fixed-Point Accuracy Analysis of 2D FFT for the Creation of Computer Generated Holograms. in 2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP) (2019), 1-5.
[107] Blinder, D. & Schelkens, P. Fast Low-Precision Computer-Generated Holography on GPU. Applied Sciences 11, (2021).
[108] Bove, V. M. & Watlington, J. A. Cheops: A reconfigurable data-flow system for video processing. IEEE Transactions on Circuits and Systems for video Technology 5, 140-149 (1995). doi: 10.1109/76.388062
[109] Watlington, J. A. et al. Hardware architecture for rapid generation of electro-holographic fringe patterns. in Practical Holography IX. 2406 (1995), 172-183.
[110] Ito, T. et al. Special-purpose computer HORN-1 for reconstruction of virtual image in three dimensions. Computer physics communications 82, 104-110 (1994). doi: 10.1016/0010-4655(94)90159-7
[111] Ito, T. et al. Special-purpose computer for holography HORN-2. Computer physics communications 93, 13-20 (1996). doi: 10.1016/0010-4655(95)00125-5
[112] Shimobaba, T. et al. Special-purpose computer for holography HORN-3 with PLD technology. Computer physics communications 130, 75-82 (2000). doi: 10.1016/S0010-4655(00)00044-8
[113] Shimobaba, T. & Ito, T. An efficient computational method suitable for hardware of computer-generated hologram with phase computation by addition. Computer Physics Communications 138, 44-52 (2001). doi: 10.1016/S0010-4655(01)00189-8
[114] Shimobaba, T., Hishinuma, S. & Ito, T. Specialpurpose computer for holography HORN-4 with recurrence algorithm. Computer physics communications 148, 160-170 (2002). doi: 10.1016/S0010-4655(02)00473-3
[115] Ito, T. et al. Special-purpose computer HORN-5 for a real-time electroholography. Optics Express 13, 1923-1932 (2005). doi: 10.1364/OPEX.13.001923
[116] Ichihashi, Y. et al. HORN-6 special-purpose clustered computing system for electroholography. Optics Express 17, 13895-13903 (2009). doi: 10.1364/OE.17.013895
[117] Okada, N. et al. Special-purpose computer HORN-7 with FPGA technology for phase modulation type electro-holography. in 19th International Display Workshops in Conjunction with Asia Display 2012, IDW/AD 2012 (2012), 1284-1287.
[118] Nishitsuji, T. et al. Special-purpose computer HORN-8 for phase-type electro-holography. Optics express 26, 26722-26733 (2018). doi: 10.1364/OE.26.026722
[119] Sugie, T. et al. High-performance parallel computing for next-generation holographic imaging. Nature Electronics 1, 254-259 (2018). doi: 10.1038/s41928-018-0057-5
[120] Seo, Y.-H. et al. An architecture of a high-speed digital hologram generator based on FPGA. Journal of Systems Architecture 56, 27-37 (2010). doi: 10.1016/j.sysarc.2009.11.001
[121] Seo, Y.-H., Lee, Y.-H. & Kim, D. -W. ASIC chipset design to generate block-based complex holographic video. Applied optics 56, D52-D59 (2017). doi: 10.1364/AO.56.000D52
[122] Yasuki, D. et al. Dedicated processor for hologram calculation using sparse Fourier bases. Applied Optics 59, 8029-8037 (2020). doi: 10.1364/AO.397982
[123] Pang, Z.-Y. et al. Hardware architecture for full analytical Fraunhofer computer-generated holograms. Optical Engineering 54, 095101 (2015). doi: 10.1117/1.OE.54.9.095101
[124] Masuda, N. et al. Special purpose computer for digital holographic particle tracking velocimetry. Optics Express 14, 587-592 (2006). doi: 10.1364/OPEX.14.000587
[125] Abe, Y. et al. Special purpose computer system for flow visualization using holography technology. Optics express 16, 7686-7692 (2008). doi: 10.1364/OE.16.007686
[126] Cheng, C.-J. et al. Efficient FPGA-based Fresnel transform architecture for digital holography. Journal of Display Technology 10, 272-281 (2013).
[127] Liu, X. et al. Bitwidth-Optimized Energy-Efficient FFT Design via Scaling Information Propagation. in Proceedings of the 58th ACM/EDAC/IEEE Design Automation Conference (IEEE Press, San Francisco, CA, USA, 2021).
[128] Kim, H. et al. A single-chip FPGA holographic video processor. IEEE Transactions on Industrial Electronics 66, 2066-2073 (2018).
[129] An, J. et al. Slim-panel holographic video display. Nature communications 11, 1-7 (2020). doi: 10.1038/s41467-019-13993-7
[130] Buckley, E. Real-time error diffusion for signal-tonoise ratio improvement in a holographic projection system. Journal of Display Technology 7, 70-76 (2011). doi: 10.1109/JDT.2010.2094180
[131] Dong, D. et al. Cost-optimized heterogeneous FPGA architecture for non-iterative hologram generation. Applied Optics 59, 7540-7546 (2020). doi: 10.1364/AO.398904
[132] Neto, L. G., Roberge, D. & Sheng, Y. Full-range, continuous, complex modulation by the use of two coupled-mode liquid-crystal televisions. Applied Optics 35, 4567-4576 (1996). doi: 10.1364/AO.35.004567
[133] Makowski, M. et al. Complex light modulation for lensless image projection. Chinese Optics Letters 9, 120008 (2011). doi: 10.3788/COL201109.120008
[134] Makowski, M. in Holographic Materials and Applications (ed Kumar, M.) chap. 5 (Rijeka: IntechOpen, 2019).
[135] Liu, J.-P. et al. Complex Fresnel hologram display using a single SLM. Applied optics 50, H128-H135 (2011). doi: 10.1364/AO.50.00H128
[136] Bryngdahl, O. & Lohmann, A. Single-sideband holography. JOSA 58, 620-624 (1968). doi: 10.1364/JOSA.58.000620
[137] Takaki, Y. & Tanemoto, Y. Band-limited zone plates for single-sideband holography. Applied optics 48, H64-H70 (2009).
[138] Hsueh, C.-K. & Sawchuk, A. A. Computer-generated double-phase holograms. Applied optics 17, 3874-3883 (1978). doi: 10.1364/AO.17.003874
[139] Mendoza-Yero, O., Mınguez-Vega, G. & Lancis, J. Encoding complex fields by using a phase-only optical element. Optics letters 39, 1740-1743 (2014). doi: 10.1364/OL.39.001740
[140] Shimobaba, T. et al. Simple complex amplitude encoding of a phase-only hologram using binarized amplitude. Journal of Optics 22, 045703 (2020). doi: 10.1088/2040-8986/ab7b02
[141] Goorden, S. A., Bertolotti, J. & Mosk, A. P. Superpixel-based spatial amplitude and phase modulation using a digital micromirror device. Optics express 22, 17999-18009 (2014). doi: 10.1364/OE.22.017999
[142] Jiao, S. et al. Complex-amplitude holographic projection with a digital micromirror device (DMD) and error diffusion algorithm. IEEE Journal of Selected Topics in Quantum Electronics 26, 1-8 (2020).
[143] Bianco, V. et al. Strategies for reducing speckle noise in digital holography. Light: Science & Applications 7, 1-16 (2018).
[144] Bianco, V. et al. Quasi noise-free digital holography. Light: Science & Applications 5, e16142-e16142 (2016).
[145] Amako, J., Miura, H. & Sonehara, T. Speckle-noise reduction on kinoform reconstruction using a phaseonly spatial light modulator. Applied optics 34, 3165-3171 (1995). doi: 10.1364/AO.34.003165
[146] Buckley, E. 70.2: Invited paper: holographic laser projection technology. in SID Symposium Digest of Technical Papers. 39 (2008), 1074–1079.
[147] Wang, D. et al. Holographic Display System to Suppress Speckle Noise Based on Beam Shaping. in Photonics. 8 (2021), 204.
[148] Christopher, P. J. et al. Improving performance of single-pass real-time holographic projection. Optics Communications 457, 124666 (2020). doi: 10.1016/j.optcom.2019.124666
[149] Takaki, Y. & Yokouchi, M. Speckle-free and grayscale hologram reconstruction using time-multiplexing technique. Optics express 19, 7567-7579 (2011). doi: 10.1364/OE.19.007567
[150] Makowski, M. Minimized speckle noise in lens-less holographic projection by pixel separation. Optics express 21, 29205-29216 (2013). doi: 10.1364/OE.21.029205
[151] Mori, Y., Fukuoka, T. & Nomura, T. Speckle reduction in holographic projection by random pixel separation with time multiplexing. Applied optics 53, 8182-8188 (2014). doi: 10.1364/AO.53.008182
[152] Curtis, V. R. et al. DCGH: Dynamic Computer Generated Holography for Speckle-Free, High Fidelity 3D Displays. in 2021 IEEE Virtual Reality and 3D User Interfaces (VR) (2021), 1-9.
[153] Hauck, R. & Bryngdahl, O. Computer-generated holograms with pulse-density modulation. JOSA A 1, 5-10 (1984). doi: 10.1364/JOSAA.1.000005
[154] Tsang, P. W. M. & Poon, T. -C. Novel method for converting digital Fresnel hologram to phase-only hologram based on bidirectional error diffusion. Optics express 21, 23680-23686 (2013). doi: 10.1364/OE.21.023680
[155] Yang, G. et al. Error diffusion method with optimized weighting coefficients for binary hologram generation. Applied optics 58, 5547-5555 (2019). doi: 10.1364/AO.58.005547
[156] Cheremkhin, P. A. et al. Comparative analysis of offaxis digital hologram binarization by error diffusion. Journal of Optics (2021).
[157] Matsumoto, Y. & Takaki, Y. Improvement of grayscale representation of horizontally scanning holographic display using error diffusion. Optics letters 39, 3433-3436 (2014). doi: 10.1364/OL.39.003433
[158] Takaki, Y., Matsumoto, Y. & Nakajima, T. Color image generation for screen-scanning holographic display. Optics express 23, 26986-26998 (2015). doi: 10.1364/OE.23.026986
[159] Tsang, P. et al. Computer generation of binary Fresnel holography. Applied optics 50, B88-B95 (2011). doi: 10.1364/AO.50.000B88
[160] Tsang, P., Chow, Y.-T. & Poon, T. -C. Generation of phase-only Fresnel hologram based on downsampling. Optics express 22, 25208-25214 (2014). doi: 10.1364/OE.22.025208
[161] Tsang, P. et al. Optimal sampled phase-only hologram (OSPOH). Optics Express 29, 25488-25498 (2021). doi: 10.1364/OE.430776
[162] Velez-Zea, A. & Torroba, R. Optimized random phase tiles for non-iterative hologram generation. Applied optics 58, 9013-9019 (2019). doi: 10.1364/AO.58.009013
[163] Shimobaba, T. & Ito, T. Random phase-free computergenerated hologram. Optics express 23, 9549-9554 (2015). doi: 10.1364/OE.23.009549
[164] Shimobaba, T. et al. Random phase-free kinoform for large objects. Optics express 23, 17269-17274 (2015). doi: 10.1364/OE.23.017269
[165] Nagahama, Y. et al. Speeding up image quality improvement in random phase-free holograms using ringing artifact characteristics. Applied optics 56, F61-F66 (2017). doi: 10.1364/AO.56.000F61
[166] Chen, L. et al. Non-iterative phase hologram generation with optimized phase modulation. Optics express 28, 11380-11392 (2020). doi: 10.1364/OE.391518
[167] Fienup, J. R. Phase retrieval algorithms: a comparison. Applied optics 21, 2758-2769 (1982). doi: 10.1364/AO.21.002758
[168] Bauschke, H. H., Combettes, P. L. & Luke, D. R. Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization. JOSA A 19, 1334-1345 (2002). doi: 10.1364/JOSAA.19.001334
[169] Makowski, M. et al. Three-plane phase-only computer hologram generated with iterative Fresnel algorithm. Optical Engineering 44, 125805 (2005). doi: 10.1117/1.2148980
[170] Pang, H. et al. Accurate hologram generation using layer-based method and iterative Fourier transform algorithm. IEEE Photonics Journal 9, 1-8 (2016).
[171] Georgiou, A. et al. Aspects of hologram calculation for video frames. Journal of Optics A: Pure and Applied Optics 10, 035302 (2008). doi: 10.1088/1464-4258/10/3/035302
[172] Wu, Y. et al. Adaptive weighted Gerchberg-Saxton algorithm for generation of phase-only hologram with artifacts suppression. Optics Express 29, 1412-1427 (2021). doi: 10.1364/OE.413723
[173] Chen, L. et al. Weighted constraint iterative algorithm for phase hologram generation. Applied Sciences 10, 3652 (2020). doi: 10.3390/app10103652
[174] Chang, C. et al. Speckle-suppressed phase-only holographic three-dimensional display based on doubleconstraint Gerchberg-Saxton algorithm. Applied optics 54, 6994-7001 (2015). doi: 10.1364/AO.54.006994
[175] Seldowitz, M. A., Allebach, J. P. & Sweeney, D. W. Synthesis of digital holograms by direct binary search. Applied optics 26, 2788-2798 (1987). doi: 10.1364/AO.26.002788
[176] Chhetri, B. B., Yang, S. & Shimomura, T. Stochastic approach in the efficient design of the direct-binarysearch algorithm for hologram synthesis. Applied optics 39, 5956-5964 (2000). doi: 10.1364/AO.39.005956
[177] Liu, J.-P., Yu, C.-Q. & Tsang, P. W. Enhanced direct binary search algorithm for binary computergenerated Fresnel holograms. Applied optics 58, 3735-3741 (2019). doi: 10.1364/AO.58.003735
[178] Yoshikawa, N. & Yatagai, T. Phase optimization of a kinoform by simulated annealing. Applied optics 33, 863-868 (1994). doi: 10.1364/AO.33.000863
[179] Abadi, M. et al. TensorFlow: A System for LargeScale Machine Learning. in Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation (USENIX Association, Savannah, GA, USA, 2016), 265-283.
[180] Paszke, A. et al. in Advances in Neural Information Processing Systems 32 (eds Wallach, H. et al.) 8024-8035 (Curran Associates, Inc., 2019).
[181] Chen, C. et al. Multi-depth hologram generation using stochastic gradient descent algorithm with complex loss function. Optics Express 29, 15089-15103 (2021). doi: 10.1364/OE.425077
[182] Chakravarthula, P. et al. Learned Hardware-in-theloop Phase Retrieval for Holographic Near-Eye Displays. ACM Transactions on Graphics (TOG) 39, 186 (2020).
[183] Choi, S. et al. Optimizing image quality for holographic near-eye displays withmichelson holography. Optica 8, 143-146 (2021). doi: 10.1364/OPTICA.410622
[184] Ahar, A. et al. Suitability analysis of holographic vs light field and 2D displays for subjective quality assessment of Fourier holograms. Optics Express 28, 37069-37091 (2020). doi: 10.1364/OE.405984
[185] Wang, Z. et al. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing 13, 600-612 (2004). doi: 10.1109/TIP.2003.819861
[186] Dumic, E., Duarte, C. R. & da Silva Cruz, L. A. Subjective evaluation and objective measures for point clouds — State of the art. in 2018 First International Colloquium on Smart Grid Metrology (SmaGriMet) (2018), 1-5.
[187] Alexiou, E. & Ebrahimi, T. Exploiting user interactivity in quality assessment of point cloud imaging. in 2019 Eleventh International Conference on Quality of Multimedia Experience (QoMEX) (2019), 1–6.
[188] Meynet, G. et al. PCQM: A Full-Reference Quality Metric for Colored 3D Point Clouds. in 2020 Twelfth International Conference on Quality of Multimedia Experience (QoMEX) (2020), 1-6.
[189] Liu, Q. et al. PQA-Net: Deep No Reference Point Cloud Quality Assessment via Multi-View Projection. IEEE Transactions on Circuits and Systems for Video Technology 31, 4645-4660 (2021). doi: 10.1109/TCSVT.2021.3100282
[190] Viola, I., Řeřábek, M. & Ebrahimi, T. A new approach to subjectively assess quality of plenoptic content. in Applications of Digital Image Processing XXXIX. 9971 (San Diego: SPIE, 2016), 287-299.
[191] Mahmoudpour, S. & Schelkens, P. On the performance of objective quality metrics for lightfields. Signal Processing: Image Communication 93, 116179 (2021). doi: 10.1016/j.image.2021.116179
[192] Blinder, D. et al. Open Access Database for Experimental Validations of Holographic Compression Engines. in Proceedings of the 2015 Seventh International Workshop on Quality of Multimedia Experience. (Pilos: IEEE, 2015).
[193] Gilles, A. et al. Computer generated hologram from multiview-plus-depth data considering specular reflections. in 2016 IEEE International Conference on Multimedia & Expo Workshops (ICMEW) (2016), 1-6.
[194] Bernardo, M. V. et al. Holographic representation: Hologram plane vs. object plane. Signal Processing: Image Communication 68, 193-206. (2018).
[195] ISO/IEC JTC1/SC29/WG1. JPEG pleno database. (2021). at https://jpeg.org/jpegpleno/plenodb.html.
[196] Singh, P. et al. A Review on SAR Image and its Despeckling. Archives of Computational Methods in Engineering 28, 4633-4653 (2021). doi: 10.1007/s11831-021-09548-z
[197] Kumar Pal, S., Bhardwaj, A. & Shukla, A. A Review on Despeckling Filters in Ultrasound Images for Speckle Noise Reduction. in 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE) (2021), 973-978.
[198] Ahar, A. et al. Comprehensive performance analysis of objective quality metrics for digital holography. Signal Processing: Image Communication 97, 116361 (2021). doi: 10.1016/j.image.2021.116361
[199] Fonseca, E. et al. Assessment of speckle denoising filters for digital holography using subjective and objective evaluation models. Applied Optics 58, (2019).
[200] Montresor, S. & Picart, P. Quantitative appraisal for noise reduction in digital holographic phase imaging. Optics Express 24, 14322-14343 (2016). doi: 10.1364/OE.24.014322
[201] Birnbaum, T. et al. Speckle Denoising of ComputerGenerated Macroscopic Holograms. in Digital Holography and Three-Dimensional Imaging 2019 (Optical Society of America, 2019), W3A.1.
[202] Kumar, M. et al. Speckle denoising techniques in imaging systems. Journal of Optics 22, 063001 (2020). doi: 10.1088/2040-8986/ab8b7f
[203] Corda, R. et al. An exploratory study towards objective quality evaluation of digital hologram coding tools. in Proceedings of SPIE 11137, Applications of Digital Image Processing XLⅡ (San Diego: SPIE, 2019), 358-367.
[204] Amirpourazarian, H. et al. Quality evaluation of holographic images coded with standard codecs. IEEE Transactions on Multimedia, 1-1 (2021).
[205] Muhamad, R. K. et al. JPEG Pleno holography: scope and technology validation procedures. Applied Optics 60, 641 (2021). doi: 10.1364/AO.404305
[206] Ahar, A. et al. Validation of dynamic subjective quality assessment methodology for holographic coding solutions. in 2021 13th International Conference on Quality of Multimedia Experience (QoMEX) (2021), 7-12.
[207] ISO/IEC JTC1/SC29/WG1. Common Test Conditions 6.0 for JPEG Pleno Holography. WG1N100035, 93rd JPEG Meeting, (2021).
[208] Ahar, A. Perceptual quality prediction and analysis for digital holography. PhD thesis (Vrije Universiteit Brussels, 2021).