[1] Michelson, A. A. & Benoit, J. R. Détermination expérimentale de la valeur du mètre en longueurs d’ondes lumineuses. (Paris: Gauthier-Villars et fils, 1894).
[2] Benoît, R. Application des phénomènes d’interférence à des déterminations métrologiques. Journal de Physique Théorique et Appliquée 7, 57-68 (1898).
[3] Born, M. & Wolf, E. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. (Cambridge: Cambridge University Press, 1999).
[4] Poole, S. P. & Dowell, J. H. Application of interferometry to the routine measurement of block gauges. in Optics and Metrology. (ed Mollet, P.) (New York: Pergamon, 1960).
[5] Engelhard, E. Precise interferometric measurement of gauge blocks. Proceedings of the Symposium on Gauge Blocks. 1957.
[6] Forrester, A. T., Parkins, W. E. & Gerjuoy, E. On the possibility of observing beat frequencies between lines in the visible spectrum. Physical Review Journals Archive 72, 728 (1947).
[7] Wyant, J. C. Testing aspherics using two-wavelength holography. Applied Optics 10, 2113-2118 (1971). doi: 10.1364/AO.10.002113
[8] Polhemus, C. Two-wavelength interferometry. Applied Optics 12, 2071-2074 (1973). doi: 10.1364/AO.12.002071
[9] Bien, F. et al. Absolute distance measurements by variable wavelength interferometry. Applied Optics 20, 400-403 (1981). doi: 10.1364/AO.20.000400
[10] Dändliker, R., Thalmann, R. & Prongué, D. Two-wavelength laser interferometry using superheterodyne detection. Optics Letters 13, 339-341 (1988). doi: 10.1364/OL.13.000339
[11] Cheng, Y. Y. & Wyant, J. C. Multiple-wavelength phase-shifting interferometry. Applied Optics 24, 804-807 (1985). doi: 10.1364/AO.24.000804
[12] Cheng, Y. Y. & Wyant, J. C. Two-wavelength phase shifting interferometry. Applied Optics 23, 4539-4543 (1984). doi: 10.1364/AO.23.004539
[13] Hildebrand, B. P. & Haines, K. A. Multiple-wavelength and multiple-source holography applied to contour generation. Journal of the Optical Society of America 57, 155-162 (1967). doi: 10.1364/JOSA.57.000155
[14] Zelenka, J. S. & Varner, J. R. A new method for generating depth contours holographically. Applied Optics 7, 2107-2110 (1968). doi: 10.1364/AO.7.002107
[15] Pförtner, A. & Schwider, J. Dispersion error in white-light Linnik interferometers and its implications for evaluation procedures. Applied Optics 40, 6223-6228 (2001). doi: 10.1364/AO.40.006223
[16] De Nicola, S. et al. Recovering correct phase information in multiwavelength digital holographic microscopy by compensation for chromatic aberrations. Optics Letters 30, 2706-2708 (2005). doi: 10.1364/OL.30.002706
[17] Javidi, B. et al. Three-dimensional image fusion by use of multiwavelength digital holography. Optics Letters 30, 144-146 (2005). doi: 10.1364/OL.30.000144
[18] Ferraro, P. et al. Quantitative phase microscopy of microstructures with extended measurement range and correction of chromatic aberrations by multiwavelength digital holography. Optics Express 15, 14591-14600 (2007). doi: 10.1364/OE.15.014591
[19] Liu, D. et al. Practical methods for retrace error correction in nonnull aspheric testing. Optics Express 17, 7025-7035 (2009). doi: 10.1364/OE.17.007025
[20] Zhang, L. Q. et al. Measurement of steep aspheric surfaces using improved two-wavelength phase-shifting interferometer. Proceedings of SPIE 10458 AOPC 2017: 3D Measurement Technology for Intelligent Manufacturing. Beijing: SPIE, 2017, 10458.
[21] Zhang, L. et al. Non-null annular subaperture stitching interferometry for steep aspheric measurement. Applied Optics 53, 5755-5762 (2014). doi: 10.1364/AO.53.005755
[22] De Groot, P. J. Extending the unambiguous range of two-color interferometers. Applied Optics 33, 5948-5953 (1994). doi: 10.1364/AO.33.005948
[23] Falaggis, K., Towers, D. P. & Towers, C. E. Multiwavelength interferometry: extended range metrology. Optics Letters 34, 950-952 (2009). doi: 10.1364/OL.34.000950
[24] Falaggis, K. et al. Multi-wavelength phase unwrapping: a versatile tool for extending the measurement range, breaking the Nyquist limit, and encrypting optical communications. Proceedings of SPIE 10749 Interferometry XIX. San Diego: SPIE, 2018, 1074913.
[25] Falaggis, K., Towers, D. P. & Towers, C. E. Algebraic solution for phase unwrapping problems in multiwavelength interferometry. Applied Optics 53, 3737-3747 (2014). doi: 10.1364/AO.53.003737
[26] Friesem, A. A. & Levy, U. Fringe formation in two-wavelength contour holography. Applied Optics 15, 3009-3020 (1976). doi: 10.1364/AO.15.003009
[27] Sodnik, Z. et al. Two-wavelength double heterodyne interferometry using a matched grating technique. Applied Optics 30, 3139-3144 (1991).
[28] Fercher, A. F., Vry, U. & Werner, W. Two-wavelength speckle interferometry on rough surfaces using a mode hopping diode laser. Optics and Lasers in Engineering 11, 271-279 (1989). doi: 10.1016/0143-8166(89)90065-1
[29] Wada, A., Kato, M. & Ishii, Y. Large step-height measurements using multiple-wavelength holographic interferometry with tunable laser diodes. Journal of the Optical Society of America A 25, 3013-3020 (2008). doi: 10.1364/JOSAA.25.003013
[30] Mann, C. J. et al. Quantitative phase imaging by three-wavelength digital holography. Optics Express 16, 9753-9764 (2008). doi: 10.1364/OE.16.009753
[31] Wada, A. Multiple-wavelength holographic interferometry with tunable laser diodes. in Advanced Holography – Metrology and Imaging (ed Naydenova, I.) (Rijeka: InTech, 2011).
[32] De Groot, P. & Kishner, S. Synthetic wavelength stabilization for two-color laser-diode interferometry. Applied Optics 30, 4026-4033 (1991). doi: 10.1364/AO.30.004026
[33] Wang, C. L., Chuang, Y. H. & Pan, C. L. Two-wavelength interferometer based on a two-color laser-diode array and the second-order correlation technique. Optics Letters 20, 1071-1073 (1995). doi: 10.1364/OL.20.001071
[34] Chen, K. H. et al. Alternative method of wavelength drift free dual-wavelength heterodyne interferometry for the absolute distance measurement. Optical Review 16, 492-494 (2009). doi: 10.1007/s10043-009-0096-2
[35] Wu, G. H. et al. Synthetic wavelength interferometry of an optical frequency comb for absolute distance measurement. Scientific Reports 8, 4362 (2018). doi: 10.1038/s41598-018-22838-0
[36] Mustafin, K. S. & Seleznev, V. A. Methods of increasing the sensitivity of holographic interferometry. Soviet Physics Uspekhi 13, 416 (1970). doi: 10.1070/PU1970v013n03ABEH004270
[37] Weigi, F. A generalized technique of two-wavelength, nondiffuse holographic interferometry. Applied Optics 10, 187-192 (1971). doi: 10.1364/AO.10.000187
[38] Weigl, F. Two-wavelength holographic interferometry for transparent media using a diffraction grating. Applied Optics 10, 1083-1086 (1971). doi: 10.1364/AO.10.001083
[39] Di, J. L. et al. Dual wavelength digital holography for improving the measurement accuracy. Proceedings of SPIE 8769 International Conference on Optics in Precision Engineering and Nanotechnology (icOPEN2013). Singapore: SPIE, 2013, 87690G.
[40] Di, J. L. et al. Improvement of measurement accuracy in digital holographic microscopy by using dual-wavelength technique. Journal of Micro/Nanolithography,MEMS,and MOEMS 14, 041313 (2015). doi: 10.1117/1.JMM.14.4.041313
[41] Zuo, C. et al. Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review. Optics and Lasers in Engineering 85, 84-103 (2016). doi: 10.1016/j.optlaseng.2016.04.022
[42] Xiong, J. X. et al. Improved phase retrieval method of dual-wavelength interferometry based on a shorter synthetic-wavelength. Optics Express 25, 7181-7191 (2017). doi: 10.1364/OE.25.007181
[43] Servin, M., Padilla, M. & Garnica, G. Super-sensitive two-wavelength fringe projection profilometry with 2-sensitivities temporal unwrapping. Optics and Lasers in Engineering 106, 68-74 (2018). doi: 10.1016/j.optlaseng.2018.02.012
[44] Zhang, S. Recent progresses on real-time 3D shape measurement using digital fringe projection techniques. Optics and Lasers in Engineering 48, 149-158 (2010). doi: 10.1016/j.optlaseng.2009.03.008
[45] Gorthi, S. S. & Rastogi, P. Fringe projection techniques: whither we are?. Optics and Lasers in Engineering 48, 133-140 (2010). doi: 10.1016/j.optlaseng.2009.09.001
[46] Su, X. Y. & Zhang, Q. C. Dynamic 3-D shape measurement method: a review. Optics and Lasers in Engineering 48, 191-204 (2010). doi: 10.1016/j.optlaseng.2009.03.012
[47] Su, X. Y. & Chen, W. J. Fourier transform profilometry: a review. Optics and Lasers in Engineering 35, 263-284 (2001). doi: 10.1016/S0143-8166(01)00023-9
[48] Burke, J. et al. Reverse engineering by fringe projection. Proceedings of SPIE 4778 Interferometry XI: Applications. Seattle: SPIE, 2002.
[49] Hausler, G. et al. Deflectometry vs. interferometry. Proceedings of SPIE 8788 Optical Measurement Systems for Industrial Inspection VIII. Munich: SPIE, 2013, 87881C.
[50] Shin, S. & Yu, Y. Measuring the both surfaces profiles of optical element using transmission deflectometry with liquids. 2015 11th Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR). Busan: IEEE, 2015, 1-2.
[51] Geng, J. Structured-light 3D surface imaging: a tutorial. Advances in Optics and Photonics 3, 128-160 (2011). doi: 10.1364/AOP.3.000128
[52] Forbes, A., De Oliveira, M. & Dennis, M. R. Structured light. Nature Photonics 15, 253-262 (2021). doi: 10.1038/s41566-021-00780-4
[53] Zhou, H. W. et al. Digital correlation of computer-generated holograms for 3D face recognition. Applied Optics 58, G177-G186 (2019). doi: 10.1364/AO.58.00G177
[54] Salvi, J., Pagès, J. & Batlle, J. Pattern codification strategies in structured light systems. Pattern Recognition 37, 827-849 (2004). doi: 10.1016/j.patcog.2003.10.002
[55] Sciammarella, C. A. The moiré method Ƀ a review. Experimental Mechanics 22, 418-433 (1982). doi: 10.1007/BF02326823
[56] Guo, H. Y., Zhou, H. W. & Banerjee, P. P. Single-shot digital phase-shifting Moiré patterns for 3D topography. Applied Optics 60, A84-A92 (2021). doi: 10.1364/AO.404424
[57] He, F. et al. Moiré patterns in 2D materials: a review. ACS Nano 15, 5944-5958 (2021). doi: 10.1021/acsnano.0c10435
[58] Miao, J. W. et al. Extending the methodology of X-ray crystallography to allow imaging of micrometer-sized non-crystalline specimens. Nature 400, 342-344 (1999). doi: 10.1038/22498
[59] Hoppe, W. Beugung im inhomogenen primärstrahlwellenfeld. I.Prinzip einer phasenmessung von elektronenbeungungsinterferenzen. Acta Crystallographica Section A 25, 495-501 (1969). doi: 10.1107/S0567739469001045
[60] Zheng, G. A., Horstmeyer, R. & Yang, C. Wide-field, high-resolution Fourier ptychographic microscopy. Nature Photonics 7, 739-745 (2013). doi: 10.1038/nphoton.2013.187
[61] Lin, C. et al. Spatial pattern-shifting method for complete two-wavelength fringe projection profilometry. Optics Letters 45, 3115-3118 (2020). doi: 10.1364/OL.392102
[62] Deng, W. B. Absolute phase recovery based on two-wavelength fringes using a defocusing technique in fringe projection profilometry. Optical Engineering 59, 064109 (2020).
[63] Abdelsalam, D. G., Magnusson, R. & Kim, D. Single-shot, dual-wavelength digital holography based on polarizing separation. Applied Optics 50, 3360-3368 (2011). doi: 10.1364/AO.50.003360
[64] Chen, B. Y., Cheng, X. H. & Li, D. C. Dual-wavelength interferometric technique with subnanometric resolution. Applied Optics 41, 5933-5937 (2002). doi: 10.1364/AO.41.005933
[65] Di, J. L. et al. Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging based on lateral shearing interferometry. Applied Optics 55, 7287-7293 (2016). doi: 10.1364/AO.55.007287
[66] Kühn, J. et al. Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition. Optics Express 15, 7231-7242 (2007). doi: 10.1364/OE.15.007231
[67] Fu, Y. et al. Dual-wavelength image-plane digital holography for dynamic measurement. Optics and Lasers in Engineering 47, 552-557 (2009). doi: 10.1016/j.optlaseng.2008.10.002
[68] Zhou, H. W. et al. Performance analysis of phase retrieval using transport of intensity with digital holography. Applied Optics 60, A73-A83 (2021). doi: 10.1364/AO.404390
[69] Abdelsalam, D. G. & Kim, D. Real-time dual-wavelength digital holographic microscopy based on polarizing separation. Optics Communications 285, 233-237 (2012). doi: 10.1016/j.optcom.2011.09.044
[70] Guo, R. L. et al. Phase unwrapping in dual-wavelength digital holographic microscopy with total variation regularization. Optics Letters 43, 3449-3452 (2018). doi: 10.1364/OL.43.003449
[71] Turko, N. A. & Shaked, N. T. Simultaneous two-wavelength phase unwrapping using an external module for multiplexing off-axis holography. Optics Letters 42, 73-76 (2017). doi: 10.1364/OL.42.000073
[72] Karako, L. et al. Flipping interferometric module for simultaneous dual-wavelength unwrapping of quantitative phase maps of biological cells. Frontiers in Physics 9, 667023 (2021). doi: 10.3389/fphy.2021.667023
[73] Williams, L. et al. Holographic volume displacement calculations via multiwavelength digital holography. Applied Optics 53, 1597-1603 (2014). doi: 10.1364/AO.53.001597
[74] Wagner, C., Osten, W. & Seebacher, S. Direct shape measurement by digital wavefront reconstruction and multi-wavelength contouring. Optical Engineering 39, 79 (2000). doi: 10.1117/1.602338
[75] Abeywickrema, U. et al. High-resolution topograms of fingerprints using multiwavelength digital holography. Optical Engineering 56, 034117 (2017). doi: 10.1117/1.OE.56.3.034117
[76] Haus, J. W. et al. Instantaneously captured images using multiwavelength digital holography. Proceedings of SPIE 8493 Interferometry XVI: Techniques and Analysis. San Diego: SPIE, 2012, 84930W.
[77] Willomitzer, F. et al. Fast non-line-of-sight imaging with high-resolution and wide field of view using synthetic wavelength holography. Nature Communications 12, 6647 (2021). doi: 10.1038/s41467-021-26776-w
[78] Abeywickrema, U. et al. Holographic topography using acousto-optically generated large synthetic wavelengths. Proceedings of SPIE 9771 Practical Holography XXX: Materials and Applications. San Francisco: SPIE, 2016, 97710C.
[79] Lu, S. H. & Lee, C. C. Measuring large step heights by variable synthetic wavelength interferometry. Measurement Science and Technology 13, 1382-1387 (2002). doi: 10.1088/0957-0233/13/9/302
[80] Hase, E. et al. Multicascade-linked synthetic-wavelength digital holography using a line-by-line spectral-shaped optical frequency comb. Optics Express 29, 15772-15785 (2021). doi: 10.1364/OE.424458
[81] Weimann, C. et al. Synthetic-wavelength interferometry improved with frequency calibration and unambiguity range extension. Applied Optics 54, 6334-6343 (2015). doi: 10.1364/AO.54.006334
[82] De Groot, P. J. & McGarvey, J. A. Laser gage using chirped synthetic wavelength interferometry. Proceedings of SPIE 1821 Industrial Applications of Optical Inspection, Metrology, and Sensing. Boston: SPIE, 1993.
[83] Chen, J. B. et al. Synthetic-wavelength self-mixing interferometry for displacement measurement. Optics Communications 368, 73-80 (2016). doi: 10.1016/j.optcom.2016.01.061
[84] Claus, D. et al. Accuracy enhanced and synthetic wavelength adjustable optical metrology via spectrally resolved digital holography. Journal of the Optical Society of America A 35, 546-552 (2018). doi: 10.1364/JOSAA.35.000546
[85] Su, W. H. & Liu, H. Y. Calibration-based two-frequency projected fringe profilometry: a robust, accurate, and single-shot measurement for objects with large depth discontinuities. Optics Express 14, 9178-9187 (2006). doi: 10.1364/OE.14.009178
[86] Qiao, N. & Quan, C. Dual-frequency fringe projection for 3D shape measurement based on correction of gamma nonlinearity. Optics & Laser Technology 106, 378-384 (2018).
[87] Li, J. L. et al. Optimized two-frequency phase-measuring-profilometry light-sensor temporal-noise sensitivity. Journal of the Optical Society of America A 20, 106-115 (2003). doi: 10.1364/JOSAA.20.000106
[88] Tahara, T. et al. Three-wavelength digital holography using spatial frequency-division multiplexing and dual reference arms. Proceedings of SPIE 9720 High-Speed Biomedical Imaging and Spectroscopy: Toward Big Data Instrumentation and Management. San Francisco: SPIE, 2016, 972009.
[89] Barbosa, E. A. et al. Enhanced multiwavelength holographic profilometry by laser mode selection. Optical Engineering 46, 075601 (2007). doi: 10.1117/1.2756817
[90] Nadeborn, W., Andrä, P. & Osten, W. A robust procedure for absolute phase measurement. Optics and Lasers in Engineering 24, 245-260 (1996). doi: 10.1016/0143-8166(95)00017-8
[91] Tian, X. B. et al. Snapshot multi-wavelength interference microscope. Optics Express 26, 18279-18291 (2018). doi: 10.1364/OE.26.018279
[92] Zhong, J. G. & Wang. M. Phase unwrapping by lookup table method: application to phase map with singular points. Optical Engineering 38, 2075-2080 (1999). doi: 10.1117/1.602314
[93] Towers, C. E., Towers, D. P. & Jones, J. D. C. Optimum frequency selection in multifrequency interferometry. Optics Letters 28, 887-889 (2003). doi: 10.1364/OL.28.000887
[94] Towers, C. E., Towers, D. P. & Jones, J. D. C. Absolute fringe order calculation using optimised multi-frequency selection in full-field profilometry. Optics and Lasers in Engineering 43, 788-800 (2005). doi: 10.1016/j.optlaseng.2004.08.005
[95] Falaggis, K., Towers, D. P. & Towers, C. E. Unified theory of phase unwrapping approaches in multiwavelength interferometry. Proceedings of SPIE 8011 22nd Congress of the International Commission for Optics: Light for the Development of the World. Puebla: SPIE, 2011, 80117H.
[96] Falaggis, K., Towers, D. P. & Towers, C. E. Method of excess fractions with application to absolute distance metrology: wavelength selection and the effects of common error sources. Applied Optics 51, 6471-6479 (2012). doi: 10.1364/AO.51.006471
[97] Zuo, C. et al. High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection. Optics and Lasers in Engineering 51, 953-960 (2013). doi: 10.1016/j.optlaseng.2013.02.012
[98] Porras-Aguilar, R. & Falaggis, K. Absolute phase recovery in structured light illumination systems: sinusoidal vs. intensity discrete patterns. Optics and Lasers in Engineering 84, 111-119 (2016). doi: 10.1016/j.optlaseng.2016.04.010
[99] Xu, Y. et al. Multi-frequency projected fringe profilometry for measuring objects with large depth discontinuities. Optics Communications 288, 27-30 (2013). doi: 10.1016/j.optcom.2012.09.042
[100] Fei, L. H. et al. Single-wavelength phase retrieval method from simultaneous multi-wavelength in-line phase-shifting interferograms. Optics Express 22, 30910-30923 (2014). doi: 10.1364/OE.22.030910
[101] Saucedo, T. et al. Simultaneous two-dimensional endoscopic pulsed digital holography for evaluation of dynamic displacements. Applied Optics 45, 4534-4539 (2006). doi: 10.1364/AO.45.004534
[102] Goodman, J. W. Introduction to Fourier Optics. 3rd edn. (Greenwoood Village: Roberts & Company Publishers, 2005).
[103] Schnars, U. & Jueptner, W. Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques. (Berlin: Springer, 2005).
[104] Bioucas-Dias, J. M. & Valadao, G. Phase unwrapping via graph cuts. IEEE Transactions on Image Processing 16, 698-709 (2007). doi: 10.1109/TIP.2006.888351
[105] Kreis, T. Handbook of Holographic Interferometry: Optical and Digital Methods. (Weinheim: Wiley, 2005).
[106] Morimoto, Y. et al. Subnanometer displacement measurement by averaging of phase difference in windowed digital holographic interferometry. Optical Engineering 46, 025603 (2007). doi: 10.1117/1.2538709
[107] Nehmetallah, G. T., Aylo, R. & Williams, L. Analog and Digital Holography with MATLAB. (Bellingham: SPIE Press, 2015).
[108] Shen, F. B. & Wang, A. B. Fast-Fourier-transform based numerical integration method for the Rayleigh-Sommerfeld diffraction formula. Applied Optics 45, 1102-1110 (2006). doi: 10.1364/AO.45.001102
[109] Xia, X. G. Discrete chirp-Fourier transform and its application to chirp rate estimation. IEEE Transactions on Signal Processing 48, 3122-3133 (2000). doi: 10.1109/78.875469
[110] Yamaguchi, I. & Zhang, T. Phase-shifting digital holography. Optics Letters 22, 1268-1270 (1997). doi: 10.1364/OL.22.001268
[111] Tahara, T. et al. Dual-wavelength phase-shifting digital holography selectively extracting wavelength information from wavelength-multiplexed holograms. Optics Letters 40, 2810-2813 (2015). doi: 10.1364/OL.40.002810
[112] Servin, M. et al. Temporal phase-unwrapping of static surfaces with 2-sensitivity fringe-patterns. Optics Express 23, 15806-15815 (2015). doi: 10.1364/OE.23.015806
[113] Gass, J., Dakoff, A. & Kim, M. K. Phase imaging without 2π ambiguity by multiwavelength digital holography. Optics Letters 28, 1141-1143 (2003). doi: 10.1364/OL.28.001141
[114] Chen, B. Y. et al. Development of a laser synthetic wavelength interferometer for large displacement measurement with nanometer accuracy. Optics Express 18, 3000-3010 (2010). doi: 10.1364/OE.18.003000
[115] Onodera, R. & Ishii, Y. Two-wavelength interferometry that uses a Fourier-transform method. Applied Optics 37, 7988-7994 (1998). doi: 10.1364/AO.37.007988
[116] Rinehart, M. T. et al. Simultaneous two-wavelength transmission quantitative phase microscopy with a color camera. Optics Letters 35, 2612-2614 (2010). doi: 10.1364/OL.35.002612
[117] Birch, K. P. Optical fringe subdivision with nanometric accuracy. Precision Engineering 12, 195-198 (1990). doi: 10.1016/0141-6359(90)90060-C
[118] Chapman, H. N. et al. High-resolution ab initio three-dimensional X-ray diffraction microscopy. Journal of the Optical Society of America A 23, 1179-1200 (2006). doi: 10.1364/JOSAA.23.001179
[119] Chapman, H. N. et al. Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nature Physics 2, 839-843 (2006). doi: 10.1038/nphys461
[120] Williams, G. J. et al. Three-dimensional imaging of microstructure in Au nanocrystals. Physical Review Letters 90, 175501 (2003). doi: 10.1103/PhysRevLett.90.175501
[121] Marchesini, S. et al. X-ray image reconstruction from a diffraction pattern alone. Physical Review B 68, 140101 (2003). doi: 10.1103/PhysRevB.68.140101
[122] Latychevskaia, T. Iterative phase retrieval in coherent diffractive imaging: practical issues. Applied Optics 57, 7187-7197 (2018). doi: 10.1364/AO.57.007187
[123] Malm, E., Fohtung, E. & Mikkelsen, A. Multi-wavelength phase retrieval for coherent diffractive imaging. Optics Letters 46, 13-16 (2021). doi: 10.1364/OL.408452
[124] Gerchberg, R. W. & Saxton, W. O. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237-250 (1971).
[125] Fienup, J. R. Phase retrieval algorithms: a comparison. Applied Optics 21, 2758-2769 (1982). doi: 10.1364/AO.21.002758
[126] Oszlányi, G. & Süto, A. Ab initio structure solution by charge flipping. Acta Crystallographica Section A 60, 134-141 (2004).
[127] Luke, D. R. Relaxed averaged alternating reflections for diffraction imaging. Inverse Problems 21, 37-50 (2004).
[128] Martin, A. V. et al. Noise-robust coherent diffractive imaging with a single diffraction pattern. Optics Express 20, 16650-16661 (2012). doi: 10.1364/OE.20.016650
[129] Shechtman, Y. et al. Phase retrieval with application to optical imaging: A contemporary overview. IEEE Signal Processing Magazine 32, 87-109 (2015). doi: 10.1109/MSP.2014.2352673
[130] Ou, X. Z., Zheng, G. A. & Yang, C. Embedded pupil function recovery for Fourier ptychographic microscopy. Optics Express 22, 4960-4972 (2014). doi: 10.1364/OE.22.004960
[131] Tian, L. et al. Multiplexed coded illumination for Fourier ptychography with an LED array microscope. Biomedical Optics Express 5, 2376-2389 (2014). doi: 10.1364/BOE.5.002376
[132] Faulkner, H. M. L. & Rodenburg, J. M. Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm. Physical Review Letters 93, 023903 (2004). doi: 10.1103/PhysRevLett.93.023903
[133] Bates, R. H. T. & Rodenburg, J. M. Sub-ångström transmission microscopy: a Fourier transform algorithm for microdiffraction plane intensity information. Ultramicroscopy 31, 303-307 (1989). doi: 10.1016/0304-3991(89)90052-1
[134] Ou, X. Z. et al. Aperture scanning Fourier ptychographic microscopy. Biomedical Optics Express 7, 3140-3150 (2016). doi: 10.1364/BOE.7.003140
[135] Claus, D. et al. Dual wavelength optical metrology using ptychography. Journal of Optics 15, 035702 (2013). doi: 10.1088/2040-8978/15/3/035702
[136] Choi, G. J. et al. Dual-wavelength Fourier ptychography using a single LED. Optics Letters 43, 3526-3529 (2018). doi: 10.1364/OL.43.003526
[137] Greivenkamp, J. E. Sub-Nyquist interferometry. Applied Optics 26, 5245-5258 (1987). doi: 10.1364/AO.26.005245
[138] Itoh, K. Analysis of the phase unwrapping algorithm. Applied Optics 21, 2470 (1982). doi: 10.1364/AO.21.002470
[139] Schuhler, N. et al. Frequency-comb-referenced two-wavelength source for absolute distance measurement. Optics Letters 31, 3101-3103 (2006). doi: 10.1364/OL.31.003101
[140] Amein, A. S. & Soraghan, J. J. A new chirp scaling algorithm based on the fractional Fourier transform. IEEE Signal Processing Letters 12, 705-708 (2005). doi: 10.1109/LSP.2005.855547
[141] Sukhoy, V. & Stoytchev, A. Numerical error analysis of the ICZT algorithm for chirp contours on the unit circle. Scientific Reports 10, 4852 (2020). doi: 10.1038/s41598-020-60878-7
[142] Attota, R. et al. Application of through-focus focus-metric analysis in high resolution optical metrology. Proceedings of SPIE 5752 Metrology, Inspection, and Process Control for Microlithography XIX. San Jose: SPIE, 2005.
[143] Tamamitsu, M. et al. A robust holographic autofocusing criterion based on edge sparsity: comparison of Gini index and Tamura coefficient for holographic autofocusing based on the edge sparsity of the complex optical wavefront. Proceedings of SPIE 10503 Quantitative Phase Imaging IV. San Francisco: SPIE, 2018, 105030J.
[144] Bianco, V. et al. Strategies for reducing speckle noise in digital holography. Light: Science & Applications 7, 48 (2018).
[145] Williams, L. et al. Volume displacement measurement via multi-wavelength digital holographic surface topography at the microscopic level. Proceedings of SPIE 9006 Practical Holography XXVIII: Materials and Applications. San Francisco: SPIE, 2014, 90060K.
[146] Yamaguchi, I., Yamamoto, A. & Kuwamura, S. Speckle decorrelation in surface profilometry by wavelength scanning interferometry. Applied Optics 37, 6721-6728 (1998). doi: 10.1364/AO.37.006721
[147] Lehmann, M. Decorrelation-induced phase errors in phase-shifting speckle interferometry. Applied Optics 36, 3657-3667 (1997). doi: 10.1364/AO.36.003657
[148] Schnars, U. et al. Digital Holography and Wavefront Sensing: Principles, Techniques and Applications. 2nd ed. (Berlin: Springer-Verlag, 2015).
[149] Poittevin, J. et al. Quality assessment of combined quantization-shot-noise-induced decorrelation noise in high-speed digital holographic metrology. Optics Express 23, 30917-30932 (2015). doi: 10.1364/OE.23.030917
[150] Montresor, S. & Picart, P. Quantitative appraisal for noise reduction in digital holographic phase imaging. Optics Express 24, 14322-14343 (2016). doi: 10.1364/OE.24.014322
[151] Lee, J. S. Digital image enhancement and noise filtering by use of local statistics. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-2, 165-168 (1980). doi: 10.1109/TPAMI.1980.4766994
[152] Mallat, S. A Wavelet Tour of Signal Processing. (New York: Academic Press, 1999).
[153] Donoho, D. L. De-noising by soft-thresholding. IEEE Transactions on Information Theory 41, 613-627 (1995). doi: 10.1109/18.382009
[154] Wang, D. D. et al. Compact snapshot multiwavelength interferometer. Optics Letters 44, 4463-4466 (2019). doi: 10.1364/OL.44.004463
[155] Banerjee, P. P., Beresnev, L. A. & Vorontsov, M. A. Cancellation of effects of large phase distortions on images by dynamic holography using ferroelectric liquid crystal spatial light modulators. Proceedings of SPIE 3760 High-Resolution Wavefront Control: Methods, Devices, and Applications. Denver: SPIE, 1999, 83-87.
[156] Farriss, W. E. et al. Sharpness-based correction methods in holographic aperture ladar (HAL). Proceedings of SPIE 10772 Unconventional and Indirect Imaging, Image Reconstruction, and Wavefront Sensing 2018. San Diego: SPIE, 2018, 107720K.
[157] Tippie, A. E. & Fienup, J. R. Multiple-plane anisoplanatic phase correction in a laboratory digital holography experiment. Optics Letters 35, 3291-3293 (2010). doi: 10.1364/OL.35.003291
[158] Rodríguez, C. et al. An adaptive optics module for deep tissue multiphoton imaging in vivo. Nature Methods 18, 1259-1264 (2021). doi: 10.1038/s41592-021-01279-0
[159] Venediktov, V. Y. et al. Two-wavelength dynamic holography and its application in adaptive optics. in Adaptive Optics for Industry and Medicine (ed Love, G. D.) (World Scientific, 1999), 317-322.
[160] Hampson, K. M. et al. Adaptive optics for high-resolution imaging. Nature Reviews Methods Primers 1, 68 (2021). doi: 10.1038/s43586-021-00066-7
[161] Saha, S. K. Modern optical astronomy: technology and impact of interferometry. Reviews of Modern Physics 74, 551 (2002). doi: 10.1103/RevModPhys.74.551
[162] Lycksam, H. et al. Wiener filtering of interferometry measurements through turbulent air using an exponential forgetting factor. Applied Optics 47, 2971-2978 (2008). doi: 10.1364/AO.47.002971
[163] Lycksam, H., Sjödahl, M. & Gren, P. Measurement of spatiotemporal phase statistics in turbulent air flow using high-speed digital holographic interferometry. Applied Optics 49, 1314-1322 (2010). doi: 10.1364/AO.49.001314
[164] Labeyrie, A. Attainment of diffraction limited resolution in large telescopes by Fourier analyzing speckle patterns in star images. Astron. Astrophys 6, 85-87 (1970).
[165] Upputuri, P. K. et al. Two-wavelength microscopic speckle interferometry using colour CCD camera. Proceedings of SPIE 9302 International Conference on Experimental Mechanics 2014. Singapore: SPIE, 2014, 93023K.
[166] Zheng, G. A. et al. Concept, implementations and applications of Fourier ptychography. Nature Reviews Physics 3, 207-223 (2021). doi: 10.1038/s42254-021-00280-y
[167] Baek, Y. et al. Kramers-Kronig holographic imaging for high-space-bandwidth product. Optica 6, 45-51 (2019). doi: 10.1364/OPTICA.6.000045
[168] Shen, C. et al. Non-iterative complex wave-field reconstruction based on Kramers-Kronig relations. Photonics Research 9, 1003-1012 (2021). doi: 10.1364/PRJ.419886
[169] Scott, A., Banerjee, P. & Slagle, J. Non-mechanical beam steering using reflection-mode readout of volume gratings in a photorefractive material. Proceedings of SPIE 11498 Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications XIV. SPIE, 2020, 114980G.