[1] |
Moroni, L. et al. Biofabrication strategies for 3D in vitro models and regenerative medicine. Nature Reviews Materials 3, 21-37 (2018). doi: 10.1038/s41578-018-0006-y |
[2] |
Murphy, S. V., De Coppi, P. & Atala, A. Opportunities and challenges of translational 3D bioprinting. Nature Biomedical Engineering 4, 370-380 (2020). |
[3] |
Lee, A. et al. 3D bioprinting of collagen to rebuild components of the human heart. Science 365 , 482-487 (2019). |
[4] |
De Santis, M. M. et al. Extracellular-matrix-reinforced bioinks for 3D bioprinting human tissue. Advanced Materials 33, 2005476 (2021). doi: 10.1002/adma.202005476 |
[5] |
You, S. T. et al. High cell density and high-resolution 3D bioprinting for fabricating vascularized tissues. Science Advances 9, eade7923 (2023). doi: 10.1126/sciadv.ade7923 |
[6] |
Daly, A. C. et al. 3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels. Nature Communications 12 , 753 (2021). |
[7] |
Qiu, B. N. et al. Bioprinting neural systems to model central nervous system diseases. Advanced Functional Materials 30, 1910250 (2020). doi: 10.1002/adfm.201910250 |
[8] |
Nie, J. et al. Grafting of 3D bioprinting to in vitro drug screening: a review. Advanced Healthcare Materials 9, 1901773 (2020). doi: 10.1002/adhm.201901773 |
[9] |
Janani, G. et al. Mimicking native liver lobule microarchitecture in vitro with parenchymal and non-parenchymal cells using 3D bioprinting for drug toxicity and drug screening applications. ACS Applied Materials & Interfaces 14, 10167-10186 (2022). |
[10] |
Matai, I. et al. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials 226, 119536 (2020). doi: 10.1016/j.biomaterials.2019.119536 |
[11] |
Li, X. D. et al. Inkjet bioprinting of biomaterials. Chemical Reviews 120, 10793-10833 (2020). doi: 10.1021/acs.chemrev.0c00008 |
[12] |
Zhang, Y. S. et al. 3D extrusion bioprinting. Nature Reviews Methods Primers 1 , 1-20 (2021). |
[13] |
Chang, J. L. & Sun, X. M. Laser-induced forward transfer based laser bioprinting in biomedical applications. Frontiers in Bioengineering and Biotechnology 11, 1255782 (2023). doi: 10.3389/fbioe.2023.1255782 |
[14] |
Li, W. L. et al. Stereolithography apparatus and digital light processing-based 3D bioprinting for tissue fabrication. iScience 26, 106039 (2023). doi: 10.1016/j.isci.2023.106039 |
[15] |
Bernal, P. N. et al. Volumetric bioprinting of organoids and optically tuned hydrogels to build liver-like metabolic biofactories (Adv. Mater. 15/2022). Advanced Materials 34 , 2270112 (2022). |
[16] |
Lee, M. et al. Guiding lights: tissue bioprinting using photoactivated materials. Chemical Reviews 120, 10950-11027 (2020). doi: 10.1021/acs.chemrev.0c00077 |
[17] |
Miri, A. K. et al. Effective bioprinting resolution in tissue model fabrication. Lab on a Chip 19, 2019-2037 (2019). doi: 10.1039/C8LC01037D |
[18] |
Chae, S. & Cho, D. W. Biomaterial-based 3D bioprinting strategy for orthopedic tissue engineering. Acta Biomaterialia 156, 4-20 (2023). doi: 10.1016/j.actbio.2022.08.004 |
[19] |
Heinrich, M. A. et al. 3D bioprinting: from benches to translational applications. Small 15 , 1805510 (2019). |
[20] |
Singh, S. et al. In situ bioprinting – Bioprinting from benchside to bedside? Acta Biomaterialia 101 , 14-25 (2020). |
[21] |
Xie, M. J. et al. In situ 3D bioprinting with bioconcrete bioink. Nature Communications 13, 3597 (2022). doi: 10.1038/s41467-022-30997-y |
[22] |
Chen, Y. W. et al. Noninvasive in vivo 3D bioprinting. Science Advances 6, eaba7406 (2020). doi: 10.1126/sciadv.aba7406 |
[23] |
Urciuolo, A. et al. Intravital three-dimensional bioprinting. Nature Biomedical Engineering 4, 901-915 (2020). doi: 10.1038/s41551-020-0568-z |
[24] |
Karami, P. et al. NIR light-mediated photocuring of adhesive hydrogels for noninvasive tissue repair via upconversion optogenesis. Biomacromolecules 23 , 5007-5017 (2022). |
[25] |
Zhou, C. et al. Ferromagnetic soft catheter robots for minimally invasive bioprinting. Nature Communications 12, 5072 (2021). doi: 10.1038/s41467-021-25386-w |
[26] |
Jacques, S. L. Optical properties of biological tissues: a review. Physics in Medicine & Biology 58, R37-R61 (2013). |
[27] |
Zong, W. J. et al. Miniature two-photon microscopy for enlarged field-of-view, multi-plane and long-term brain imaging. Nature Methods 18, 46-49 (2021). doi: 10.1038/s41592-020-01024-z |
[28] |
Wan, H. et al. Molecular imaging in the second near-infrared window. Advanced Functional Materials 29, 1900566 (2019). doi: 10.1002/adfm.201900566 |
[29] |
Li, C. Y. et al. Advanced fluorescence imaging technology in the near-infrared-II window for biomedical applications. Journal of the American Chemical Society 142, 14789-14804 (2020). doi: 10.1021/jacs.0c07022 |
[30] |
Chen, L. L. et al. Near-infrared-II quantum dots for in vivo imaging and cancer therapy. Small 18, 2104567 (2022). doi: 10.1002/smll.202104567 |
[31] |
Huo, M. F. et al. Upconversion nanoparticles hybridized cyanobacterial cells for near-infrared mediated photosynthesis and enhanced photodynamic therapy. Advanced Functional Materials 31, 2010196 (2021). doi: 10.1002/adfm.202010196 |
[32] |
Lv, Z. Q. et al. Noble metal nanomaterials for NIR-triggered photothermal therapy in cancer. Advanced Healthcare Materials 10, 2001806 (2021). doi: 10.1002/adhm.202001806 |
[33] |
Kiefer, P. et al. Sensitive photoresists for rapid multiphoton 3D laser micro- and nanoprinting. Advanced Optical Materials 8, 2000895 (2020). doi: 10.1002/adom.202000895 |
[34] |
Chen, Z. J. et al. Near-infrared light driven photopolymerization based on photon upconversion. ChemPhotoChem 3, 1077-1083 (2019). doi: 10.1002/cptc.201900007 |
[35] |
Vellekoop, I. M. & Mosk, A. P. Focusing coherent light through opaque strongly scattering media. Optics Letters 32, 2309-2311 (2007). doi: 10.1364/OL.32.002309 |
[36] |
Vellekoop, I. M. & Mosk, A. P. Phase control algorithms for focusing light through turbid media. Optics Communications 281, 3071-3080 (2008). doi: 10.1016/j.optcom.2008.02.022 |
[37] |
Yaqoob, Z. et al. Optical phase conjugation for turbidity suppression in biological samples. Nature Photonics 2, 110-115 (2008). doi: 10.1038/nphoton.2007.297 |
[38] |
Katz, O. et al. Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers. Optica 1, 170-174 (2014). doi: 10.1364/OPTICA.1.000170 |
[39] |
Horstmeyer, R., Ruan, H. W. & Yang, C. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nature Photonics 9, 563-571 (2015). doi: 10.1038/nphoton.2015.140 |
[40] |
Liu, Y. et al. Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light. Nature Communications 6, 5904 (2015). doi: 10.1038/ncomms6904 |
[41] |
Boniface, A., Dong, J. & Gigan, S. Non-invasive focusing and imaging in scattering media with a fluorescence-based transmission matrix. Nature Communications 11, 6154 (2020). doi: 10.1038/s41467-020-19696-8 |
[42] |
Osnabrugge, G. et al. Generalized optical memory effect. Optica 4, 886-892 (2017). doi: 10.1364/OPTICA.4.000886 |
[43] |
Judkewitz, B. et al. Translation correlations in anisotropically scattering media. Nature Physics 11, 684-689 (2015). doi: 10.1038/nphys3373 |
[44] |
Yang, X., Pu, Y. & Psaltis, D. Imaging blood cells through scattering biological tissue using speckle scanning microscopy. Optics Express 22, 3405-3413 (2014). doi: 10.1364/OE.22.003405 |
[45] |
Wang, X. D. et al. Efficiently scanning a focus behind scattering media beyond memory effect by wavefront tilting and re-optimization. Optics Express 31, 32287-32297 (2023). doi: 10.1364/OE.501692 |
[46] |
Rauer, B. et al. Scattering correcting wavefront shaping for three-photon microscopy. Optics Letters 47, 6233-6236 (2022). doi: 10.1364/OL.468834 |
[47] |
Osnabrugge, G., Amitonova, L. V. & Vellekoop, I. M. Blind focusing through strongly scattering media using wavefront shaping with nonlinear feedback. Optics Express 27, 11673-11688 (2019). doi: 10.1364/OE.27.011673 |
[48] |
Zhang, Q. Y. et al. Multi-photon polymerization using upconversion nanoparticles for tunable feature-size printing. Nanophotonics 12, 1527-1536 (2023). doi: 10.1515/nanoph-2022-0598 |
[49] |
Berlage, C. et al. Deep tissue scattering compensation with three-photon F-SHARP. Optica 8, 1613-1619 (2021). doi: 10.1364/OPTICA.440279 |
[50] |
Yang, J. M. et al. Anti-scattering light focusing by fast wavefront shaping based on multi-pixel encoded digital-micromirror device. Light: Science & Applications 10 , 149 (2021). |
[51] |
Bonati, C. et al. Lock-in incoherent differential phase contrast imaging. Photonics Research 10, 237-247 (2022). doi: 10.1364/PRJ.445896 |
[52] |
Yoon, S. et al. Deep optical imaging within complex scattering media. Nature Reviews Physics 2, 141-158 (2020). doi: 10.1038/s42254-019-0143-2 |
[53] |
Zhu, L. et al. Large field-of-view non-invasive imaging through scattering layers using fluctuating random illumination. Nature Communications 13, 1447 (2022). doi: 10.1038/s41467-022-29166-y |
[54] |
Hahn, V. et al. Challenges and opportunities in 3D laser printing based on (1 + 1)-photon absorption. ACS Photonics 10, 24-33 (2023). doi: 10.1021/acsphotonics.2c01632 |
[55] |
Kim, M. et al. Deep sub-wavelength nanofocusing of UV-visible light by hyperbolic metamaterials. Scientific Reports 6, 38645 (2016). doi: 10.1038/srep38645 |
[56] |
Ren, H. R. et al. An achromatic metafiber for focusing and imaging across the entire telecommunication range. Nature Communications 13, 4183 (2022). doi: 10.1038/s41467-022-31902-3 |
[57] |
Luo, J. W. et al. High-speed single-exposure time-reversed ultrasonically encoded optical focusing against dynamic scattering. Science Advances 8, eadd9158 (2022). doi: 10.1126/sciadv.add9158 |
[58] |
Cheng, Z. T. et al. High-gain and high-speed wavefront shaping through scattering media. Nature Photonics 17, 299-305 (2023). doi: 10.1038/s41566-022-01142-4 |
[59] |
Wen, S. H. et al. Advances in highly doped upconversion nanoparticles. Nature Communications 9, 2415 (2018). doi: 10.1038/s41467-018-04813-5 |
[60] |
Gigan, S. et al. Roadmap on wavefront shaping and deep imaging in complex media. Journal of Physics: Photonics 4, 042501 (2022). doi: 10.1088/2515-7647/ac76f9 |
[61] |
Yue, K. et al. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 73, 254-271 (2015). doi: 10.1016/j.biomaterials.2015.08.045 |
[62] |
Katz, O., Small, E. & Silberberg, Y. Looking around corners and through thin turbid layers in real time with scattered incoherent light. Nature Photonics 6, 549-553 (2012). doi: 10.1038/nphoton.2012.150 |