[1] Gu, M., Li, X. P. & Cao, Y. Y. Optical storage arrays: a perspective for future big data storage. Light. Sci. Appl. 3, e177 (2014). doi: 10.1038/lsa.2014.58
[2] Gu, M., Zhang, Q. M. & Lamon, S. Nanomaterials for optical data storage. Nat. Rev. Mater. 1, 16070 (2016). doi: 10.1038/natrevmats.2016.70
[3] Fukaya, T. et al. Optical switching property of a light-induced pinhole in antimony thin film. Appl. Phys. Lett. 75, 3114-3116 (1999). doi: 10.1063/1.125248
[4] Shi, L. P. et al. A new structure of super-resolution near-field phase-change optical disk with a Sb2Te3 mask layer. Jpn J. Appl. Phys. 40, 1649-1650 (2001). doi: 10.1143/JJAP.40.1649
[5] Liu, Y. J. et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature 543, 229-233 (2017). doi: 10.1038/nature21366
[6] Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780-782 (1994). doi: 10.1364/OL.19.000780
[7] Heanue, J. F., Bashaw, M. C. & Hesselink, L. Volume holographic storage and retrieval of digital data. Science 265, 749-752 (1994). doi: 10.1126/science.265.5173.749
[8] Zijlstra, P., Chon, J. W. & Gu, M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 459, 410-413 (2009). doi: 10.1038/nature08053
[9] Zhang, J. Y. et al. Seemingly unlimited lifetime data storage in nanostructured glass. Phys. Rev. Lett. 112, 033901 (2014). doi: 10.1103/PhysRevLett.112.033901
[10] Fang, X. Y., Ren, H. R. & Gu, M. Orbital angular momentum holography for high-security encryption. Nat. Photonics https://doi.org/10.1038/s41566-019-0560-x (2019).
[11] Ditlbacher, H. et al. Spectrally coded optical data storage by metal nanoparticles. Opt. Lett. 25, 563-565 (2000). doi: 10.1364/OL.25.000563
[12] Park, S. et al. Hydrazine-reduction of graphite-and graphene oxide. Carbon 49, 3019-3023 (2011). doi: 10.1016/j.carbon.2011.02.071
[13] Li, X. P. et al. Athermally photoreduced graphene oxides for three-dimensional holographic images. Nat. Commun. 6, 6984 (2015). doi: 10.1038/ncomms7984
[14] Lamon, S. et al. Millisecond-timescale, high-efficiency modulation of upconversion luminescence by photochemically derived graphene. Adv. Opt. Mater. 7, 1901345 (2019). doi: 10.1002/adom.201901345
[15] Hanne, J. et al. STED nanoscopy with fluorescent quantum dots. Nat. Commun. 6, 7127 (2015). doi: 10.1038/ncomms8127
[16] Cumpston, B. H. et al. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 398, 51-54 (1999). doi: 10.1038/17989
[17] Dallari, W. et al. Light-induced inhibition of photoluminescence emission of core/shell semiconductor nanorods and its application for optical data storage. J. Phys. Chem. C 116, 25576-25580 (2012). doi: 10.1021/jp3078776
[18] Lu, Y. Q. et al. Tunable lifetime multiplexing using luminescent nanocrystals. Nat. Photonics 8, 32-36 (2014). doi: 10.1038/nphoton.2013.322
[19] Zhang, C. et al. Luminescence modulation of ordered upconversion nanopatterns by a photochromic diarylethene: rewritable optical storage with nondestructive readout. Adv. Mater. 22, 633-637 (2010). doi: 10.1002/adma.200901722
[20] Zhang, Q. M. et al. High-capacity optical long data memory based on enhanced Young's modulus in nanoplasmonic hybrid glass composites. Nat. Commun. 9, 1183 (2018). doi: 10.1038/s41467-018-03589-y
[21] Zhuang, Y. X. et al. Optical data storage and multicolor emission readout on flexible films using deep-trap persistent luminescence materials. Adv. Funct. Mater. 28, 1705769 (2018). doi: 10.1002/adfm.201705769
[22] Li, W. H. et al. Tailoring trap depth and emission wavelength in Y3Al5-xGaxO12: Ce3+, V3+ phosphor-in-glass films for optical information storage. ACS Appl. Mater. Interfaces 10, 27150-27159 (2018). doi: 10.1021/acsami.8b10713
[23] Jutamulia, S. et al. Use of electron trapping materials in optical signal processing. 1: Parallel Boolean logic. Appl. Opt. 29, 4806-4811 (1990). doi: 10.1364/AO.29.004806
[24] Lindmayer, J. A new erasable optical memory. Solid State Technol. 31, 135-138 (1988). doi: 10.1016/0038-1101(88)90120-7
[25] Li, Y., Gecevicius, M. & Qiu, J. R. Long persistent phosphors-from fundamentals to applications. Chem. Soc. Rev. 45, 2090-2136 (2016). doi: 10.1039/C5CS00582E
[26] Xu, J. & Tanabe, S. Persistent luminescence instead of phosphorescence: history, mechanism, and perspective. J. Lumin. 205, 581-620 (2018). http://cn.bing.com/academic/profile?id=daa279e2e9d335412dbd4494ede4f942&encoded=0&v=paper_preview&mkt=zh-cn
[27] Liu, X. et al. Strongly enhancing photostimulated luminescence by doping Tm3+ in Sr3SiO5: Eu2+. Opt. Lett. 38, 148-150 (2013). doi: 10.1364/OL.38.000148
[28] Liu, F. et al. Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8. Sci. Rep. 3, 1554 (2013). doi: 10.1038/srep01554
[29] Petit, R. R. et al. Adding memory to pressure-sensitive phosphors. Light. Sci. Appl. 8, 124 (2019). doi: 10.1038/s41377-019-0235-x
[30] Liang, Y. J. et al. New function of the Yb3+ ion as an efficient emitter of persistent luminescence in the short-wave infrared. Light. Sci. Appl. 5, e16124 (2016). doi: 10.1038/lsa.2016.124
[31] Lin, S. S. et al. A photostimulated BaSi2O5:Eu2+, Nd3+ phosphor-in-glass for erasable-rewritable optical storage medium. Laser Photonics Rev. 13, 1900006 (2019). doi: 10.1002/lpor.201900006
[32] Long, Z. W. et al. No-interference reading for optical information storage and ultra-multiple anti-counterfeiting applications by designing targeted recombination in charge carrier trapping phosphors. Adv. Opt. Mater. 7, 1900006 (2019). doi: 10.1002/adom.201900006
[33] Zhuang, Y. X. et al. Trap depth engineering of SrSi2O2N2: Ln2+, Ln3+ (Ln2+= Yb, Eu; Ln3+= Dy, Ho, Er) persistent luminescence materials for information storage applications. ACS Appl. Mater. Interfaces 10, 1854-1864 (2018). doi: 10.1021/acsami.7b17271
[34] Rodríguez Burbano, D. C. et al. Persistent and photostimulated red emission in CaS: Eu2+, Dy3+ nanophosphors. Adv. Opt. Mater. 3, 551-557 (2015). doi: 10.1002/adom.201400562
[35] Wang, J. et al. One-dimensional luminous nanorods featuring tunable persistent luminescence for autofluorescence-free biosensing. ACS Nano 11, 8185-8191 (2017). doi: 10.1021/acsnano.7b03128
[36] Mahadevan, S., Giridhar, A. & Singh, A. K. Calorimetric measurements on as-sb-se glasses. J. Non-Crystalline Solids 88, 11-34 (1986). doi: 10.1016/S0022-3093(86)80084-9
[37] Lin, C. G. et al. Second-order optical nonlinearity and ionic conductivity of nanocrystalline GeS2-Ga2S3-LiI glass-ceramics with improved thermo-mechanical properties. Phys. Chem. Chem. Phys. 12, 3780-3787 (2010). doi: 10.1039/b921909a
[38] Wen, S. F. et al. Pressureless crystallization of glass for transparent nanoceramics. Adv. Sci. 6, 1901096 (2019). doi: 10.1002/advs.201901096
[39] Xiang, X. Q. et al. Stress-induced CsPbBr3 nanocrystallization on glass surface: Unexpected mechanoluminescence and applications. Nano Res. 12, 1049-1054 (2019). doi: 10.1007/s12274-019-2338-3
[40] Komatsu, T. Design and control of crystallization in oxide glasses. J. Non-Crystalline Solids 428, 156-175 (2015). doi: 10.1016/j.jnoncrysol.2015.08.017
[41] Liu, X. F. et al. Transparent glass-ceramics functionalized by dispersed crystals. Prog. Mater. Sci. 97, 38-96 (2018). doi: 10.1016/j.pmatsci.2018.02.006
[42] Lin, C. G., Bocker, C. & Rüssel, C. Nanocrystallization in oxyfluoride glasses controlled by amorphous phase separation. Nano Lett. 15, 6764-6769 (2015). doi: 10.1021/acs.nanolett.5b02605
[43] Zhuang, Y. X., Ueda, J. & Tanabe, S. Multi-color persistent luminescence in transparent glass ceramics containing spinel nano-crystals with Mn2+ ions. Appl. Phys. Lett. 105, 191904 (2014). doi: 10.1063/1.4901749
[44] Hu, T. et al. Color-tunable persistent luminescence in oxyfluoride glass and glass ceramic containing Mn2+: α-Zn2SiO4 nanocrystals. J. Mater. Chem. C 5, 1479-1487 (2017). doi: 10.1039/C6TC05340H
[45] Rao, J. L. & Purandar, K. Electronic absorption spectrum of Mn2+ ions doped in diglycine barium chloride monohydrate. Solid State Commun. 37, 983-986 (1981). doi: 10.1016/0038-1098(81)91200-X
[46] Mehra, A. K. Trees correction matrices for d5 configuration in cubic symmetry. J. Chem. Phys. 48, 4384-4386 (1968). doi: 10.1063/1.1668005
[47] Zorenko, Y. Luminescence of isoelectronic impurities and antisite defects in garnets. Phys. Stat. Solid. C 2, 375-379 (2005). doi: 10.1002/pssc.200460275
[48] Song, E. H. et al. Tailored near-infrared photoemission in fluoride perovskites through activator aggregation and super-exchange between divalent manganese ions. Adv. Sci. 2, 1500089 (2015). doi: 10.1002/advs.201500089
[49] Li, Y. et al. Long persistent and photo-stimulated luminescence in Cr3+-doped Zn-Ga-Sn-O phosphors for deep and reproducible tissue imaging. J. Mater. Chem. C 2, 2657-2663 (2014). doi: 10.1039/c4tc00014e
[50] Liu, D. et al. Tailoring multidimensional traps for rewritable multilevel optical data storage. ACS Appl. Mater. Interfaces 11, 35023-35029 (2019). doi: 10.1021/acsami.9b13011
[51] Van den Eeckhout, K. et al. Revealing trap depth distributions in persistent phosphors. Phys. Rev. B 87, 045126 (2013). doi: 10.1103/PhysRevB.87.045126
[52] Bos, A. J. J. Theory of thermoluminescence. Radiat. Meas. 41, S45-S56 (2006). doi: 10.1016/j.radmeas.2007.01.003
[53] Ma, Z. D. et al. Mechanics-induced triple-mode anticounterfeiting and moving tactile sensing by simultaneously utilizing instantaneous and persistent mechanoluminescence. Mater. Horiz. 6, 2003-2008 (2019). doi: 10.1039/C9MH01028A
[54] Bünzli, J. C. G. & Pccharsky, V. K. Handbook on the Physics and Chemistry of Rare Earths Vol. 48., 1-108 (Elsevier, Amsterdam, 2015).
[55] Sun, X. Y. et al. Effect of retrapping on photostimulated luminescence in Sr3SiO5: Eu2+, Dy3+ phosphor. J. Appl. Phys. 105, 013501 (2009). doi: 10.1063/1.3050330
[56] Ueda, J., Maki, R. & Tanabe, S. Vacuum referred binding energy (VRBE)-guided design of orange persistent Ca3Si2O7: Eu2+ phosphors. Inorg. Chem. 56, 10353-10360 (2017). doi: 10.1021/acs.inorgchem.7b01214
[57] Lim, Y. T. et al. Wavelength and intensity multiplexing of metal nanoparticles for the fabrication of multicolored micro- and nanospheres. Adv. Funct. Mater. 16, 1015-1021 (2006). doi: 10.1002/adfm.200500860
[58] Royon, A. et al. Silver clusters embedded in glass as a perennial high capacity optical recording medium. Adv. Mater. 22, 5282-5286 (2010). doi: 10.1002/adma.201002413