[1] Ozkan, A. M. et al. Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters. Applied Physics Letters 75, 3716-3718 (1999).
[2] Henyk, M. et al. Femtosecond laser ablation from dielectric materials: comparison to arc discharge erosion. Applied Physics A 69, S355-S358 (1999).
[3] Bonse, J. et al. Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air. Applied Physics A 71, 657-665 (2000).
[4] Reif, J. et al. Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics. Applied Surface Science 197 - 198 , 891-895 (2002).
[5] Yasumaru, N., Miyazaki, K. & Kiuchi, J. Femtosecond-laser-induced nanostructure formed on hard thin films of TiN and DLC. Applied Physics A 76, 983-985 (2003).
[6] Wu, Q. H. et al. Femtosecond laser-induced periodic surface structure on diamond film. Applied Physics Letters 82, 1703-1705 (2003).
[7] Borowiec, A. & Haugen, H. K. Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses. Applied Physics Letters 82, 4462-4464 (2003).
[8] Yasumaru, N. , Miyazaki, K. , and Kiuchi, J. , Glassy carbon layer formed in diamond-like carbon films with femtosecond laser pulses. Applied Physics A 79 , 425-427 (2004).
[9] Rudolph, P. & Kautek, W. Composition influence of non-oxidic ceramics on self-assembled nanostructures due to fs-laser irradiation. Thin Solid Films 453 - 454 , 537-541 (2004).
[10] Dong, Y. Y. & Molian, P. Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C–SiC by the femtosecond pulsed laser. Applied Physics Letters 84, 10-12 (2004).
[11] Costache, F., Kouteva-Arguirova, S. & Reif, J. Sub–damage–threshold femtosecond laser ablation from crystalline Si: surface nanostructures and phase transformation. Applied Physics A 79, 1429-1432 (2004).
[12] Wang, J. C. & Guo, C. L. Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals. Applied Physics Letters 87, 251914 (2005).
[13] Wagner, R. et al. Subwavelength ripple formation induced by tightly focused femtosecond laser radiation. Applied Surface Science 252, 8576-8579 (2006).
[14] Buividas, R. et al. Nano-groove and 3D fabrication by controlled avalanche using femtosecond laser pulses. Optical Materials Express 3, 1674-1686 (2013).
[15] Takaya, T. et al. Fabrication of periodic nanostructures on silicon suboxide films with plasmonic near-field ablation induced by low-fluence femtosecond laser pulses. Nanomaterials 10, 1495 (2020).
[16] Iida, Y., Nikaido, S. & Miyaji, G. Sub-100-nm periodic nanostructure formation induced by short-range surface plasmon polaritons excited with few-cycle laser pulses. Journal of Applied Physics 130, 183102 (2021).
[17] Yasumaru, N., Miyazaki, K. & Kiuchi, J. Control of tribological properties of diamond-like carbon films with femtosecond-laser-induced nanostructuring. Applied Surface Science 254, 2364-2368 (2008).
[18] Wu, B. et al. Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser. Applied Surface Science 256, 61-66 (2009).
[19] Vorobyev, A. Y. & Guo, C. L. Colorizing metals with femtosecond laser pulses. Applied Physics Letters 92, 041914 (2008).
[20] Shinonaga, T. et al. Formation of periodic nanostructures using a femtosecond laser to control cell spreading on titanium. Applied Physics B 119, 493-496 (2015).
[21] Yang, Y. et al. Ultra-broadband enhanced absorption of metal surfaces structured by femtosecond laser pulses. Optics Express 16, 11259-11265 (2008).
[22] Solntsev, A. S., Agarwal, G. S. & Kivshar, Y. S. Metasurfaces for quantum photonics. Nature Photonics 15, 327-336 (2021).
[23] Guo, C. F. et al. Metallic nanostructures for light trapping in energy-harvesting devices. Light: Science & Applications 3 , e161 (2014).
[24] Kim, Y. B. et al. High-index-contrast photonic structures: a versatile platform for photon manipulation. Light: Science & Applications 11 , 316 (2022).
[25] Yang, Y. et al. Integrated metasurfaces for re-envisioning a near-future disruptive optical platform. Light: Science & Applications 12 , 152 (2023).
[26] Miyazaki, K. & Miyaji, G. Mechanism and control of periodic surface nanostructure formation with femtosecond laser pulses. Applied Physics A 114, 177-185 (2014).
[27] Bonse, J. & Gräf, S. Ten open questions about laser-induced periodic surface structures. Nanomaterials 11, 3326 (2021). doi: 10.3390/nano11123326
[28] Bruggeman, D. A. G. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Annalen der Physik 416 , 665-679 (1935).
[29] Tompkins, H. G. A User's Guide to Ellipsometry. (Mineola: Elsevier, 1993).
[30] Kikuta, H., Yoshida, H. & Iwata, K. Ability and limitation of effective medium theory for subwavelength gratings. Optical Review 2, 92-99 (1995). doi: 10.1007/s10043-995-0092-0
[31] Goncharenko, A. V. Generalizations of the Bruggeman equation and a concept of shape-distributed particle composites. Physical Review E 68, 041108 (2003).
[32] Raguin, D. H. & Michael Morris, G. Antireflection structured surfaces for the infrared spectral region. Applied Optics 32, 1154-1167 (1993).
[33] Grann, E. B., Moharam, M. G. & Pommet, D. A. Optimal design for antireflective tapered two-dimensional subwavelength grating structures. Journal of the Optical Society of America A 12, 333-339 (1995). doi: 10.1364/JOSAA.12.000333
[34] Bae, B. J. et al. Fabrication of moth-eye structure on glass by ultraviolet imprinting process with polymer template. Japanese Journal of Applied Physics 48, 010207 (2009). doi: 10.1143/JJAP.48.010207
[35] Malitson, I. H. Interspecimen comparison of the refractive index of fused silica. Journal of the Optical Society of America 55, 1205-1209 (1965).
[36] Yee, K. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Transactions on Antennas and Propagation 14, 302-307 (1966). doi: 10.1109/TAP.1966.1138693
[37] Taflove, A. & Hagness, S. C. Computational Electrodynamics: The Finite-Difference Time-Domain Method. 3rd ed. (Boston: Artech House, 2005).
[38] Huang, Y. Y. & Ho, S. T. Superhigh numerical aperture (NA>1.5) micro gradient-index lens based on a dual-material approach. Optics Letters 30 , 1291-1293 (2005).
[39] Stokseth, P. A. Properties of a defocused optical system. Journal of the Optical Society of America 59, 1314-1321 (1969). doi: 10.1364/JOSA.59.001314
[40] Soroko, L. M. Holography and Coherent Optics. (New York: Plenum Press, 1980).
[41] Goodman, J. W. Introduction to Fourier Optics. 2nd edn. (New York: McGraw-Hill, 1996).
[42] Born, M. & Wolf, E. Principles of Optics. 7th ed. (Cambridge: Cambridge University Press, 1999).
[43] Agero, U. et al. Cell surface fluctuations studied with defocusing microscopy. Physical Review E 67, 051904 (2003). doi: 10.1103/PhysRevE.67.051904
[44] Johnson, M. A. & Moradi, M. H. Some PID control fundamentals. in PID Control: New Identification and Design Methods (eds Crowe, J. et al. ) (London: Springer, 2005).
[45] Borase, R. P. et al. A review of PID control, tuning methods and applications. International Journal of Dynamics and Control 9, 818-827 (2021). doi: 10.1007/s40435-020-00665-4
[46] Kraft, S. et al. High-speed laser surface structuring for thermal spray coating preparation. Physica Status Solidi (A) 221, 2300710 (2024). doi: 10.1002/pssa.202300710
[47] Hayashi, N. et al. Demonstration of the real-time feedback control with the MicroLiDAR. Proceedings of Optical Fiber Sensors 2023. Naka-ku: Optica Publishing Group, 2023, W4.35.