[1] Jiang, W. Y. et al. Free-standing nanoarrays with energetic electrons and active sites for efficient plasmon-driven ammonia synthesis. Small 18, 2201269 (2022). doi: 10.1002/smll.202201269
[2] Schörner, C. & Lippitz, M. Single molecule nonlinearity in a plasmonic waveguide. Nano Letters 20, 2152-2156 (2020). doi: 10.1021/acs.nanolett.0c00196
[3] Gadalla, M. N. et al. Imaging of surface plasmon polaritons in low-loss highly metallic titanium nitride thin films in visible and infrared regimes. Optics Express 28, 14536-14546 (2020). doi: 10.1364/OE.391482
[4] Gramotnev, D. K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nature Photonics 4, 83-91 (2010). doi: 10.1038/nphoton.2009.282
[5] Colom, R. et al. Enhanced Purcell factor for nanoantennas supporting interfering resonances. Physical Review Research 4, 023189 (2022). doi: 10.1103/PhysRevResearch.4.023189
[6] Lin, C. C. C. et al. Monolithic plasmonic waveguide architecture for passive and active optical circuits. Nano Letters 20, 2950-2957 (2020). doi: 10.1021/acs.nanolett.9b04612
[7] Su, Y. et al. Record Purcell factors in ultracompact hybrid plasmonic ring resonators. Science Advances 5, eaav1790 (2019). doi: 10.1126/sciadv.aav1790
[8] Purcell, E. M. Spontaneous emission probabilities at radio frequencies. in Confined Electrons and Photons: New Physics and Applications (eds Burstein, E. & Weisbuch, C.) (Boston: Springer, 1995), 839-839.
[9] Lafone, L., Sidiropoulos, T. P. H. & Oulton, R. F. Silicon-based metal-loaded plasmonic waveguides for low-loss nanofocusing. Optics Letters 39, 4356-4359 (2014). doi: 10.1364/OL.39.004356
[10] Wang, F. W. et al. CMOS-compatible electronic-plasmonic transducers based on plasmonic tunnel junctions and Schottky diodes. Small 18, 2105684 (2022). doi: 10.1002/smll.202105684
[11] Alfaraj, N. et al. Deep-ultraviolet integrated photonic and optoelectronic devices: a prospect of the hybridization of group III–nitrides, III–oxides, and two-dimensional materials. Journal of Semiconductors 40, 121801 (2019). doi: 10.1088/1674-4926/40/12/121801
[12] Xu, K. K. Integrated silicon directly modulated light source using p-well in standard CMOS technology. IEEE Sensors Journal 16, 6184-6191 (2016). doi: 10.1109/JSEN.2016.2582840
[13] Hoffmann, M. et al. Conjugated polymer–gold–silver hybrid nanoparticles for plasmonic energy focusing. The Journal of Physical Chemistry C 126, 2475-2481 (2022). doi: 10.1021/acs.jpcc.1c08583
[14] Naik, G. V., Shalaev, V. M. & Boltasseva, A. Alternative plasmonic materials: beyond gold and silver. Advanced Materials 25, 3264-3294 (2013). doi: 10.1002/adma.201205076
[15] Amin, R. et al. Heterogeneously integrated ITO plasmonic Mach–Zehnder interferometric modulator on SOI. Scientific Reports 11, 1287 (2021). doi: 10.1038/s41598-020-80381-3
[16] Kwon, M. S. Discussion of two ways of optically modeling indium–tin–oxide layers in slot waveguides for waveguide analysis. IEEE Photonics Journal 8, 4900108 (2016).
[17] Baek, J., You, J. B. & Yu, K. Free-carrier electro-refraction modulation based on a silicon slot waveguide with ITO. Optics Express 23, 15863-15876 (2015). doi: 10.1364/OE.23.015863
[18] Lee, H. W. et al. Nanoscale conducting oxide PlasMOStor. Nano Letters 14, 6463-6468 (2014). doi: 10.1021/nl502998z
[19] Kim, J. T. Silicon optical modulators based on tunable plasmonic directional couplers. IEEE Journal of Selected Topics in Quantum Electronics 21, 3300108 (2015).
[20] Zhao, H. W. et al. Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide. IEEE Journal of Selected Topics in Quantum Electronics 21, 192-198 (2015).
[21] Zhu, S. Y., Lo, G. Q. & Kwong, D. L. Design of an ultra -compact electro-absorption modulator comprised of a deposited TiN/HfO2/ITO/Cu stack for CMOS backend integration. Optics Express 22, 17930-17947 (2014). doi: 10.1364/OE.22.017930
[22] Vasudev, A. P. et al. Electro-optical modulation of a silicon waveguide with an “epsilon-near-zero” material. Optics Express 21, 26387-26397 (2013). doi: 10.1364/OE.21.026387
[23] Melikyan, A. et al. Surface Plasmon polariton absorption modulator. Optics Express 19, 8855-8869 (2011). doi: 10.1364/OE.19.008855
[24] Feigenbaum, E., Diest, K. & Atwater, H. A. Unity order index change in transparent conducting oxides at visible frequencies. Nano Letters 10, 2111-2116 (2010). doi: 10.1021/nl1006307
[25] Liberal, I. et al. Photonic doping of epsilon-near-zero media. Science 355, 1058-1062 (2017). doi: 10.1126/science.aal2672
[26] Engheta, N. Pursuing near-zero response. Science 340, 286-287 (2013). doi: 10.1126/science.1235589
[27] Wu, C. et al. Quantum hybrid plasmonic nanocircuits for versatile polarized photon generation. Advanced Optical Materials 10, 2101596 (2022). doi: 10.1002/adom.202101596
[28] Bolognesi, M. et al. A fully integrated miniaturized optical biosensor for fast and multiplexing plasmonic detection of high-and low-molecular-weight analytes. Advanced Materials 35, 2208719 (2023). doi: 10.1002/adma.202208719
[29] Haffner, C. et al. Low-loss Plasmon-assisted electro-optic modulator. Nature 556, 483-486 (2018). doi: 10.1038/s41586-018-0031-4
[30] Khurgin, J. B. How to deal with the loss in plasmonics and metamaterials. Nature Nanotechnology 10, 2-6 (2015). doi: 10.1038/nnano.2014.310
[31] Wassel, H. M. G. et al. Opportunities and challenges of using plasmonic components in nanophotonic architectures. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 2, 154-168 (2012). doi: 10.1109/JETCAS.2012.2193934
[32] Lu, Z. L., Zhao, W. S. & Shi, K. F. Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides. IEEE Photonics Journal 4, 735-740 (2012). doi: 10.1109/JPHOT.2012.2197742
[33] Chang, K. H. et al. Enhancing on/off ratio of a dielectric-loaded plasmonic logic gate with an amplitude modulator. Scientific Reports 13, 5020 (2023). doi: 10.1038/s41598-023-30823-5
[34] Maier, M. et al. Ultracompact amplitude modulator by coupling hyperbolic polaritons over a graphene-covered gap. ACS Photonics 5, 544-551 (2018). doi: 10.1021/acsphotonics.7b01094
[35] Alfaraj, N. et al. Silicon-integrated monocrystalline oxide–nitride heterostructures for deep-ultraviolet optoelectronics. Optical Materials Express 11, 4130-4144 (2021). doi: 10.1364/OME.443872
[36] Alfaraj, N. et al. Heteroepitaxial β-Ga2O3 on conductive ceramic templates: toward ultrahigh gain deep-ultraviolet photodetection. Advanced Materials Technologies 6, 2100142 (2021). doi: 10.1002/admt.202100142
[37] Gadalla, M. N. et al. Excitation of strong localized surface Plasmon resonances in highly metallic titanium nitride nano-antennas for stable performance at elevated temperatures. ACS Applied Nano Materials 2, 3444-3452 (2019). doi: 10.1021/acsanm.9b00370
[38] Feng, X. et al. Photonic approach for generation and fast switching of binary digitally modulated RF signals. IEEE Photonics Journal 12, 5502208 (2020).
[39] Liu, X. G. et al. Electrical tuning of a quantum plasmonic resonance. Nature Nanotechnology 12, 866-870 (2017). doi: 10.1038/nnano.2017.103
[40] Liu, X. G. et al. Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties. Applied Physics Letters 105, 181117 (2014). doi: 10.1063/1.4900936
[41] Boltasseva, A. & Atwater, H. A. Low-loss plasmonic metamaterials. Science 331, 290-291 (2011). doi: 10.1126/science.1198258
[42] Franzen, S. et al. Plasmonic phenomena in indium tin oxide and ITO-Au hybrid films. Optics Letters 34, 2867-2869 (2009). doi: 10.1364/OL.34.002867
[43] Losego, M. D. et al. Conductive oxide thin films: model systems for understanding and controlling surface Plasmon resonance. Journal of Applied Physics 106, 024903 (2009). doi: 10.1063/1.3174440
[44] Azani, M. R., Hassanpour, A. & Torres, T. Benefits, problems, and solutions of silver nanowire transparent conductive electrodes in indium tin oxide (ITO)-free flexible solar cells. Advanced Energy Materials 10, 2002536 (2020). doi: 10.1002/aenm.202002536
[45] Chen, Z. X. et al. Fabrication of highly transparent and conductive indium–tin oxide thin films with a high figure of merit via solution processing. Langmuir 29, 13836-13842 (2013). doi: 10.1021/la4033282
[46] Rodrigo, D. et al. Mid-infrared plasmonic biosensing with graphene. Science 349, 165-168 (2015). doi: 10.1126/science.aab2051
[47] Gleiter, H. et al. Nanocrystalline materials: a way to solids with tunable electronic structures and properties?. Acta Materialia 49, 737-745 (2001). doi: 10.1016/S1359-6454(00)00221-4
[48] Sagmeister, M. et al. Electrically tunable resistance of a metal. Physical Review Letters 96, 156601 (2006). doi: 10.1103/PhysRevLett.96.156601
[49] Park, J. et al. Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers. Scientific Reports 5, 15754 (2015). doi: 10.1038/srep15754
[50] Berini, P. Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures. Physical Review B 61, 10484-10503 (2000). doi: 10.1103/PhysRevB.61.10484
[51] Oulton, R. F. et al. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nature Photonics 2, 496-500 (2008). doi: 10.1038/nphoton.2008.131
[52] Alfaraj, N. et al. Optical and interfacial characteristics of a heterojunction between ( 201)-oriented single domain β-(In0.072Ga0.928)2O3 and α-Al2O3 crystals. Optical Materials Express 12, 3273-3283 (2022). doi: 10.1364/OME.462192
[53] Worfolk, B. J. et al. Ultrahigh electrical conductivity in solution-sheared polymeric transparent films. Proceedings of the National Academy of Sciences of the United States of America 112, 14138-14143 (2015).
[54] Itoh, S. & Maruyama, K. Recoveries of metallic indium and tin from ITO by means of pyrometallurgy. High Temperature Materials and Processes 30, 317-322 (2011).
[55] Minami, T. Transparent conducting oxide semiconductors for transparent electrodes. Semiconductor Science and Technology 20, S35-S44 (2005). doi: 10.1088/0268-1242/20/4/004
[56] Yu, H. K. et al. Nano-branched transparent conducting oxides: beyond the brittleness limit for flexible electrode applications. Nanoscale 4, 6831-6834 (2012). doi: 10.1039/c2nr32228e
[57] Reineke, S. et al. White organic light-emitting diodes with fluorescent tube efficiency. Nature 459, 234-238 (2009). doi: 10.1038/nature08003
[58] Sun, Y. R. & Forrest, S. R. Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids. Nature Photonics 2, 483-487 (2008). doi: 10.1038/nphoton.2008.132
[59] Park, S. et al. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature 561, 516-521 (2018). doi: 10.1038/s41586-018-0536-x
[60] Zhao, G. Q. et al. Optical transmittance enhancement of flexible copper film electrodes with a wetting layer for organic solar cells. ACS Applied Materials & Interfaces 9, 38695-38705 (2017).
[61] Alfaraj, N. et al. Functional integrity of flexible n-channel metal–oxide–semiconductor field-effect transistors on a reversibly bistable platform. Applied Physics Letters 107, 174101 (2015). doi: 10.1063/1.4934355
[62] Na, H. et al. Enhanced CO oxidation and cyclic activities in three-dimensional platinum/indium tin oxide/carbon black electrocatalysts processed by cathodic arc deposition. ACS Applied Materials & Interfaces 11, 25179-25185 (2019).
[63] Liu, Y. & Mustain, W. E. Stability limitations for Pt/Sn–In2O3 and Pt/In–SnO2 in acidic electrochemical systems. Electrochimica Acta 115, 116-125 (2014). doi: 10.1016/j.electacta.2013.10.155
[64] Koch, U. et al. Digital plasmonic absorption modulator exploiting epsilon-near-zero in transparent conducting oxides. IEEE Photonics Journal 8, 4800813 (2016).
[65] Lin, C. C. C. Photonic devices using coupled plasmonic structures. PhD thesis, University of Toronto, Toronto, 2019.
[66] Jiang, W. F., Miao, J. Y. & Li, T. Silicon mode-selective switch via horizontal metal-oxide-semiconductor capacitor incorporated with ENZ-ITO. Scientific Reports 9, 17777 (2019). doi: 10.1038/s41598-019-54332-6
[67] Tien, C. L. et al. Effect of oxygen flow rate on the optical, electrical, and mechanical properties of DC sputtering ITO thin films. Advances in Condensed Matter Physics 2018, 2647282 (2018).
[68] Soref, R. A. & Bennett, B. R. Kramers-Kronig analysis of electro-optical switching in silicon. Proceedings of SPIE 0704, Integrated Optical Circuit Engineering IV. Cambridge, MA, United States: SPIE, 1987, 32-37.
[69] Cohen, S. S. & Gildenblat, G. S. Metal-Semiconductor Contacts and Devices. (London: Academic, 1986).
[70] Reeves, G. K. Specific contact resistance using a circular transmission line model. Solid-State Electronics 23, 487-490 (1980). doi: 10.1016/0038-1101(80)90086-6
[71] Schroder, D. K. Semiconductor Material and Device Characterization. (Hoboken: John Wiley & Sons, 2006).
[72] Rastogi, A. C. & Lakshmikumar, S. T. Indium-tin-oxide-metal interfacial resistance and its implication for solar cells. Solar Cells 26, 323-328 (1989). doi: 10.1016/0379-6787(89)90091-4
[73] Chang, C. Y., Fang, Y. K. & Sze, S. M. Specific contact resistance of metal-semiconductor barriers. Solid-State Electronics 14, 541-550 (1971). doi: 10.1016/0038-1101(71)90129-8
[74] Buchanan, M., Webb, J. B. & Williams, D. F. Preparation of conducting and transparent thin films of tin-doped indium oxide by magnetron sputtering. Applied Physics Letters 37, 213-215 (1980). doi: 10.1063/1.91829
[75] Wu, Z. X. et al. Micro metal additive manufactured low-loss slotted rectangular waveguides operating at 220- 500 GHz. Frontiers in Physics 9, 696318 (2021). doi: 10.3389/fphy.2021.696318
[76] Fiorese, V. et al. Evaluation of micro laser sintering metal 3D-printing technology for the development of waveguide passive devices up to 325 GHz. Proceedings of the 2020 IEEE/MTT-S International Microwave Symposium (IMS). Los Angeles, CA, USA: IEEE, 2020, 1168-1171.
[77] AlAloul, M. & Rasras, M. Low insertion loss plasmon-enhanced graphene all-optical modulator. ACS Omega 6, 7576-7584 (2021). doi: 10.1021/acsomega.0c06108
[78] Michelotti, F. et al. Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 1.55 μm. Optics Letters 34, 839-841 (2009). doi: 10.1364/OL.34.000839
[79] Liu, A. S. et al. A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor. Nature 427, 615-618 (2004). doi: 10.1038/nature02310
[80] Haffner, C. et al. All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale. Nature Photonics 9, 525-528 (2015). doi: 10.1038/nphoton.2015.127
[81] Hu, Y. T. et al. Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon. Laser & Photonics Reviews 10, 307-316 (2016).
[82] Phare, C. T. et al. Graphene electro-optic modulator with 30 GHz bandwidth. Nature Photonics 9, 511-514 (2015). doi: 10.1038/nphoton.2015.122
[83] Zhang, B. & Zirath, H. Metallic 3-D printed rectangular waveguides for millimeter-wave applications. IEEE Transactions on Components,Packaging and Manufacturing Technology 6, 796-804 (2016). doi: 10.1109/TCPMT.2016.2550483
[84] Alfaraj, N. et al. Heteroepitaxial growth method of compound semiconductor materials on multi-oriented semiconductor substrates and devices (2021).
[85] Gong, C. & Leite, M. S. Noble metal alloys for plasmonics. ACS Photonics 3, 507-513 (2016). doi: 10.1021/acsphotonics.5b00586
[86] Emmott, C. J. M., Urbina, A. & Nelson, J. Environmental and economic assessment of ITO-free electrodes for organic solar cells. Solar Energy Materials and Solar Cells 97, 14-21 (2012). doi: 10.1016/j.solmat.2011.09.024
[87] Itoh, S., Osamura, H. & Komada, K. Thermodynamics of indium-tin-oxygen ternary system. Materials Transactions 52, 1192-1199 (2011). doi: 10.2320/matertrans.M-M2011806
[88] Yang, C. W. & Park, J. W. The cohesive crack and buckle delamination resistances of indium tin oxide (ITO) films on polymeric substrates with ductile metal interlayers. Surface and Coatings Technology 204, 2761-2766 (2010). doi: 10.1016/j.surfcoat.2010.02.033
[89] Cairns, D. R. et al. Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates. Applied Physics Letters 76, 1425-1427 (2000). doi: 10.1063/1.126052
[90] Hümmer, T. et al. Weak and strong coupling regimes in plasmonic QED. Physical Review B 87, 115419 (2013). doi: 10.1103/PhysRevB.87.115419
[91] Nicollian, E. H. & Brews, J. R. MOS (Metal Oxide Semiconductor) Physics and Technology. (New York: Wiley, 1982).
[92] Ma, Z. Z. et al. Compact graphene plasmonic slot photodetector on silicon-on-insulator with high responsivity. ACS Photonics 7, 932-940 (2020). doi: 10.1021/acsphotonics.9b01452