[1] Gabrielli, L. H. et al. On-chip transformation optics for multimode waveguide bends. Nature Communications 3, 1217 (2012). doi: 10.1038/ncomms2232
[2] Rönn, J. et al. Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides. Nature Communications 10, 432 (2019). doi: 10.1038/s41467-019-08369-w
[3] Barik, S. & Hafezi, M. Robust and compact waveguides. Nature Nanotechnology 14, 8-9 (2019). doi: 10.1038/s41565-018-0314-9
[4] Zheng, L. et al. UV-LED projection photolithography for high-resolution functional photonic components. Microsystems & Nanoengineering 7, 64 (2021).
[5] Huang, G. H., Park, T. H. & Oh, M. C. Broadband integrated optic polarization splitters by incorporating polarization mode extracting waveguide. Scientific Reports 7, 4789 (2017). doi: 10.1038/s41598-017-05324-x
[6] Shen, B. et al. An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint. Nature Photonics 9, 378-382 (2015).
[7] Mehta, K. K. & Ram, R. J. Precise and diffraction-limited waveguide-to-free-space focusing gratings. Scientific Reports 7, 2019 (2017). doi: 10.1038/s41598-017-02169-2
[8] Wang, Z. et al. Geometrical tuning art for entirely subwavelength grating waveguide based integrated photonics circuits. Scientific Reports 6, 24106 (2016). doi: 10.1038/srep24106
[9] Geng, J. et al. Controllable generation of large-scale highly regular gratings on Si films. Light:Advanced Manufacturing 2, 273 (2021). doi: 10.37188/lam.2021.022
[10] Shirdel, M. & Mansouri-Birjandi, M. A. Photonic crystal all-optical switch based on a nonlinear cavity. Optik 127, 3955-3958 (2016). doi: 10.1016/j.ijleo.2016.01.114
[11] Xu, P. P. et al. Low-loss and broadband nonvolatile phase-change directional coupler switches. ACS Photonics 6, 553-557 (2019). doi: 10.1021/acsphotonics.8b01628
[12] Lin, D. M. et al. Dielectric gradient metasurface optical elements. Science 345, 298-302 (2014). doi: 10.1126/science.1253213
[13] Pichler, E. et al. Ring resonators in polymer foils for sensing of gaseous species. Proceedings of SPIE 9486, Advanced Environmental, Chemical, and Biological Sensing Technologies XII. Baltimore, MD, USA: SPIE, 2015, 948613.
[14] Cai, D. P. et al. High Q-factor microring resonator wrapped by the curved waveguide. Scientific Reports 5, 10078 (2015). doi: 10.1038/srep10078
[15] Oh, D. K. et al. Top-down nanofabrication approaches toward single-digit-nanometer scale structures. Journal of Mechanical Science and Technology 35, 837-859 (2021). doi: 10.1007/s12206-021-0243-7
[16] Zhu, H. et al. Femtosecond laser direct-write plasmonic nanolithography in dielectrics. Small Science 2, 2200038 (2022). doi: 10.1002/smsc.202200038
[17] Varapnickas, S. & Malinauskas, M. Processes of laser direct writing 3D nanolithography. in Handbook of Laser Micro- and Nano-Engineering (ed Sugioka, K. ) (Cham: Springer, 2020), 1-31.
[18] Luan, S. Y. et al. High-speed, large-area and high-precision fabrication of aspheric micro-lens array based on 12-bit direct laser writing lithography. Light:Advanced Manufacturing 3, 47 (2022).
[19] Zheng, L. et al. Nanofabrication of high-resolution periodic structures with a gap size below 100 nm by two-photon polymerization. Nanoscale Research Letters 14, 134 (2019). doi: 10.1186/s11671-019-2955-5
[20] Jaiswal, A. et al. Two-photon lithography of subwavelength plasmonic microstructures in metal-polymer composite resin. Materials Letters 304, 130642 (2021). doi: 10.1016/j.matlet.2021.130642
[21] Ocier, C. R. et al. Direct laser writing of volumetric gradient index lenses and waveguides. Light:Science & Applications 9, 196 (2020).
[22] Yu, H. Y. et al. Three-dimensional direct laser writing of PEGda hydrogel microstructures with low threshold power using a green laser beam. Light:Advanced Manufacturing 2, 31 (2021). doi: 10.37188/lam.2021.003
[23] Altissimo, M. E-beam lithography for micro-nanofabrication. Biomicrofluidics 4, 026503 (2010).
[24] Chen, Y. F. Nanofabrication by electron beam lithography and its applications: a review. Microelectronic Engineering 135, 57-72 (2015). doi: 10.1016/j.mee.2015.02.042
[25] Joshi-Imre, A. & Bauerdick, S. Direct-write ion beam lithography. Journal of Nanotechnology 2014, 170415 (2014).
[26] Giannuzzi, L. A. & Stevie, F. A. Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice. (New York: Springer, 2005).
[27] Oh, D. K. et al. Guided domino lithography for uniform fabrication of single-digit-nanometer scale plasmonic nanoantenna. Nanophotonics 12, 1435-1441 (2023). doi: 10.1515/nanoph-2022-0694
[28] Kim, I. et al. Cascade domino lithography for extreme photon squeezing. Materials Today 39, 89-97 (2020). doi: 10.1016/j.mattod.2020.06.002
[29] Oh, D. K. et al. Nanoimprint lithography for high-throughput fabrication of metasurfaces. Frontiers of Optoelectronics 14, 229-251 (2021). doi: 10.1007/s12200-021-1121-8
[30] Sabirova, A. et al. Nanoporous membrane fabrication by nanoimprint lithography for nanoparticle sieving. Nanoscale Advances 4, 1119-1124 (2022). doi: 10.1039/D1NA00812A
[31] Pelloquin, S. et al. Soft mold NanoImprint Lithography: a versatile tool for sub-wavelength grating applications. 2017 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP). Bordeaux, France: IEEE, 2017, 1-6.
[32] Pimpin, A. & Srituravanich, W. Review on micro- and nanolithography techniques and their applications. Mod Eng Technol 16, 37-56 (2012).
[33] Pugachev, M. V. et al. Micromask lithography for cheap and fast 2D materials microstructures fabrication. Micromachines 12, 850 (2021). doi: 10.3390/mi12080850
[34] Love, J. C. et al. Microscope projection photolithography for rapid prototyping of masters with micron-scale features for use in soft lithography. Langmuir 17, 6005-6012 (2001). doi: 10.1021/la010655t
[35] Kwon, M. & Ju, Y. G. Microscope projection photolithography based on ultraviolet light-emitting diodes. European Journal of Physics 39, 055302 (2018). doi: 10.1088/1361-6404/aac804
[36] Ovsianikov, A. et al. Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication. ACS Nano 2, 2257-2262 (2008). doi: 10.1021/nn800451w
[37] Zheng, L. et al. Planar polymer optical waveguide with metal-organic framework coating for carbon dioxide sensing. Advanced Materials Technologies 7, 2200395 (2022). doi: 10.1002/admt.202200395
[38] Rodriguez-Saona, L. et al. Miniaturization of optical sensors and their potential for high-throughput screening of foods. Current Opinion in Food Science 31, 136-150 (2020). doi: 10.1016/j.cofs.2020.04.008
[39] Ruiz-Vega, G., Soler, M. & Lechuga, L. M. Nanophotonic biosensors for point-of-care COVID-19 diagnostics and coronavirus surveillance. Journal of Physics:Photonics 3, 011002 (2021). doi: 10.1088/2515-7647/abd4ee
[40] Walter, J. G. et al. All-optical planar polymer waveguide-based biosensor chip designed for smartphone-assisted detection of vitamin D. Sensors 20, 6771 (2020). doi: 10.3390/s20236771
[41] Yan, W. et al. Advanced multimaterial electronic and optoelectronic fibers and textiles. Advanced Materials 31, 1802348 (2019). doi: 10.1002/adma.201802348
[42] Camposeo, A. et al. Additive manufacturing: applications and directions in photonics and optoelectronics. Advanced Optical Materials 7, 1800419 (2019). doi: 10.1002/adom.201800419
[43] Dong, B. W. et al. Recent progress in nanoplasmonics-based integrated optical micro/nano-systems. Journal of Physics D:Applied Physics 53, 213001 (2020). doi: 10.1088/1361-6463/ab77db
[44] Zheng, L. et al. Experimental demonstration of surface Plasmon polaritons reflection and transmission effects. Sensors 19, 4633 (2019). doi: 10.3390/s19214633
[45] Altug, H. et al. Advances and applications of nanophotonic biosensors. Nature Nanotechnology 17, 5-16 (2022). doi: 10.1038/s41565-021-01045-5