[1] Essiambre, R. J. et al. Capacity limits of optical fiber networks. Journal of Lightwave Technology 28, 662-701 (2010). doi: 10.1109/JLT.2009.2039464
[2] Ellis, A. D. et al. Approaching the non-linear Shannon limit. Journal of Lightwave Technology 28, 423-433 (2010). doi: 10.1109/JLT.2009.2030693
[3] Richardson, D. J., Fini, J. M. & Nelson, L. E. Space-division multiplexing in optical fibres. Nature Photonics 7, 354-362 (2013). doi: 10.1038/nphoton.2013.94
[4] Sillard, P., Bigot-Astruc, M. & Molin, D. Few-mode fibers for mode-division-multiplexed systems. Journal of Lightwave Technology 32, 2824-2829 (2014). doi: 10.1109/JLT.2014.2312845
[5] Bozinovic, N. et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340, 1545-1548 (2013). doi: 10.1126/science.1237861
[6] Essiambre, R. J. et al. Breakthroughs in photonics 2012: space-division multiplexing in multimode and multicore fibers for high-capacity optical communication. IEEE Photonics Journal 5, 0701307 (2013). doi: 10.1109/JPHOT.2013.2253091
[7] Thomson, R. R. et al. Ultrafast laser inscription of a 121-waveguide fan-out for astrophotonics. Optics Letters 37, 2331-2333 (2012). doi: 10.1364/OL.37.002331
[8] Thomson, R. R. et al. Ultrafast laser inscription of a three dimensional fan-out device for multicore fiber coupling applications. 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science. San Jose, CA, USA: IEEE, 2008.
[9] Riesen, N. & Love, J. D. Tapered velocity mode-selective couplers. Journal of Lightwave Technology 31, 2163-2169 (2013). doi: 10.1109/JLT.2013.2264827
[10] Thornburg, W. Q., Corrado, B. J. & Zhu, X. D. Selective launching of higher-order modes into an optical fiber with an optical phase shifter. Optics Letters 19, 454-456 (1994). doi: 10.1364/OL.19.000454
[11] Koebele, C. et al. Two mode transmission at 2x100Gb/s, over 40km-long prototype few-mode fiber, using LCOS-based programmable mode multiplexer and demultiplexer. Optics Express 19, 16593-16600 (2011). doi: 10.1364/OE.19.016593
[12] Pole, R. V. et al. Integrated optics: a report on the 2nd OSA topical meeting. Applied Optics 14, 569-579 (1975). doi: 10.1364/AO.14.000569
[13] Chen, F. Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications. Laser & Photonics Reviews 6, 622-640 (2012).
[14] Marangoni, M. et al. Reverse-proton-exchange in stoichiometric lithium tantalate. Optics Express 12, 2754-2761 (2004). doi: 10.1364/OPEX.12.002754
[15] Hukriede, J., Kip, D. & Krätzig, E. Permanent narrow-band reflection holograms for infrared light recorded in LiNbO3: Ti: Cu channel waveguides. Applied Physics B 72, 749-753 (2001). doi: 10.1007/s003400100564
[16] Srinivasan, R., Sutcliffe, E. & Braren, B. Ablation and etching of polymethylmethacrylate by very short (160 fs) ultraviolet (308 nm) laser pulses. Applied Physics Letters 51, 1285-1287 (1987). doi: 10.1063/1.99001
[17] Sima, F. et al. Three-dimensional femtosecond laser processing for lab-on-a-chip applications. Nanophotonics 7, 613-634 (2018). doi: 10.1515/nanoph-2017-0097
[18] Sugioka, K. & Cheng, Y. Ultrafast lasers—reliable tools for advanced materials processing. Light: Science & Applications 3 , e149 (2014).
[19] Nakata, Y., Okada, T. & Maeda, M. Fabrication of dot matrix, comb, and nanowire structures using laser ablation by interfered femtosecond laser beams. Applied Physics Letters 81, 4239-4241 (2002). doi: 10.1063/1.1522481
[20] Gross, S. et al. Three-dimensional ultra-broadband integrated tapered mode multiplexers. Laser & Photonics Reviews 8, L81-L85 (2014).
[21] Leon-Saval, S. G. et al. Mode-selective photonic lanterns for space-division multiplexing. Optics Express 22, 1036-1044 (2014). doi: 10.1364/OE.22.001036
[22] Chen, H. S. et al. Design constraints of photonic-lantern spatial multiplexer based on laser-inscribed 3-D waveguide technology. Journal of Lightwave Technology 33, 1147-1154 (2015). doi: 10.1109/JLT.2014.2370673
[23] Guan, B. B. et al. Mode-group-selective photonic lantern based on integrated 3D devices fabricated by ultrafast laser inscription. Optical Fiber Communication Conference 2015. Los Angeles, CA, USA: Optica Publishing Group, 2015.
[24] Gross, S. et al. Ultrafast laser inscribed mode-group-selective 6-mode photonic lanterns for mode-division multiplexing. 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). Munich, Germany: IEEE, 2017.
[25] Cheng, Y. et al. Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser. Optics Letters 28, 55 (2003). doi: 10.1364/OL.28.000055
[26] Michele, V. D. et al. Near-IR- and UV-femtosecond laser waveguide inscription in silica glasses. Optical Materials Express 9, 4624-4633 (2019). doi: 10.1364/OME.9.004624
[27] Ams, M. et al. Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses. Optics Express 13, 5676-5681 (2005). doi: 10.1364/OPEX.13.005676
[28] Royon, M. et al. X-ray preconditioning for enhancing refractive index contrast in femtosecond laser photoinscription of embedded waveguides in pure silica. Optical Materials Express 9 , 65-74 (2019).