[1] |
Zhang, Y. F. et al. Flexible antiswelling photothermal‐therapy MXene hydrogel‐based epidermal sensor for intelligent human–machine interfacing. Advanced Functional Materials 33, 2300299 (2023). doi: 10.1002/adfm.202300299 |
[2] |
Shen, Z. R. et al. Progress of flexible strain sensors for physiological signal monitoring. Biosensors and Bioelectronics 211, 114298 (2022). doi: 10.1016/j.bios.2022.114298 |
[3] |
Li, W. Z. et al. Multi-bioinspired functional conductive hydrogel patches for wound healing management. Advanced Science 10, 2301479 (2023). doi: 10.1002/advs.202301479 |
[4] |
Yang, Q. S. et al. Mixed-modality speech recognition and interaction using a wearable artificial throat. Nature Machine Intelligence 5, 169-180 (2023). doi: 10.1038/s42256-023-00616-6 |
[5] |
Wei, Y. H. et al. A wearable skinlike ultra-sensitive artificial graphene throat. ACS Nano 13, 8639-8647 (2019). doi: 10.1021/acsnano.9b03218 |
[6] |
Bauer, S. et al. 25th anniversary article: a soft future: from robots and sensor skin to energy harvesters. Advanced Materials 26 , 149-162 (2014). |
[7] |
Liu, H. G. et al. Machine-learning mental-fatigue-measuring μm-thick elastic epidermal electronics (MMMEEE). Nano Letters 24 , 16221-16230 |
[8] |
Wang, Y. L. et al. 3D geometrically structured PANI/CNT-decorated polydimethylsiloxane active pressure and temperature dual-parameter sensors for man–machine interaction applications. Journal of Materials Chemistry A 8 , 15167-15176 (2020). |
[9] |
Yin, R. Y. et al. Wearable sensors‐enabled human–machine interaction systems: from design to application. Advanced Functional Materials 31, 2008936 (2021). doi: 10.1002/adfm.202008936 |
[10] |
Chen, Y. et al. Self-assembly, alignment, and patterning of metal nanowires. Nanoscale Horizons 7, 1299-1339 (2022). doi: 10.1039/D2NH00313A |
[11] |
Yang, H. T. et al. Computational design of ultra-robust strain sensors for soft robot perception and autonomy. Nature Communications 15, 1636 (2024). doi: 10.1038/s41467-024-45786-y |
[12] |
Wang, Y. et al. Liquid metal droplets-based elastomers from electric toothbrush-inspired revolving microfluidics. Advanced Materials 35, 2211731 (2023). doi: 10.1002/adma.202211731 |
[13] |
Xu, H. et al. Dual‐mode wearable strain sensor based on graphene/colloidal crystal films for simultaneously detection of subtle and large human motions. Advanced Materials Technologies 5, 1901056 (2020). doi: 10.1002/admt.201901056 |
[14] |
Snapp, P. et al. Colloidal photonic crystal strain sensor integrated with deformable graphene phototransducer. Advanced Functional Materials 29, 1902216 (2019). doi: 10.1002/adfm.201902216 |
[15] |
Teyssier, J. et al. Photonic crystals cause active colour change in chameleons. Nature Communications 6, 6368 (2015). doi: 10.1038/ncomms7368 |
[16] |
Saenko, S. V. et al. Precise colocalization of interacting structural and pigmentary elements generates extensive color pattern variation in Phelsumalizards. BMC Biology 11, 105 (2013). doi: 10.1186/1741-7007-11-105 |
[17] |
Han, F. et al. Materials with tunable optical properties for wearable epidermal sensing in health monitoring. Advanced Materials 34, 2109055 (2022). doi: 10.1002/adma.202109055 |
[18] |
Sahu, R. R. et al. Single-step fabrication of liquid gallium nanoparticles via capillary interaction for dynamic structural colours. Nature Nanotechnology 19, 766-774 (2024). doi: 10.1038/s41565-024-01625-1 |
[19] |
Zhao, Y. J. et al. Bio-inspired variable structural color materials. Chemical Society Reviews 41, 3297-3317 (2012). doi: 10.1039/c2cs15267c |
[20] |
Zhang, H. et al. Mechanochromic optical/electrical skin for ultrasensitive dual-signal sensing. ACS Nano 17, 5921-5934 (2023). doi: 10.1021/acsnano.3c00015 |
[21] |
Sun, Y. D. et al. Biomimetic chromotropic photonic‐ionic skin with robust resilience, adhesion, and stability. Advanced Functional Materials 32, 2204467 (2022). doi: 10.1002/adfm.202204467 |
[22] |
Zhang, H. et al. Stretchable and conductive composite structural color hydrogel films as bionic electronic skins. Advanced Science 8, 2102156 (2021). doi: 10.1002/advs.202102156 |
[23] |
Li, X. et al. Mechanochromic and conductive chiral nematic nanostructured film for bioinspired ionic skins. ACS Nano 17, 12829-12841 (2023). doi: 10.1021/acsnano.3c04199 |
[24] |
Peng, L., Hou, L. & Wu, P. Y. Synergetic lithium and hydrogen bonds endow liquid-free photonic ionic elastomer with mechanical robustness and electrical/optical dual-output. Advanced Materials 35, 2211342 (2023). doi: 10.1002/adma.202211342 |
[25] |
Hu, Y. et al. Chameleon-inspired brilliant and sensitive mechano-chromic photonic skins for self-reporting the strains of earthworms. ACS Applied Materials & Interfaces 14, 11672-11680 (2022). |
[26] |
Li, X. K. et al. Polymerizable deep eutectic solvent‐based skin‐like elastomers with dynamic schemochrome and self‐healing ability. Small 18, 2201012 (2022). doi: 10.1002/smll.202201012 |
[27] |
Yang, T. T. et al. A wearable and highly sensitive graphene strain sensor for precise home-based pulse wave monitoring. ACS Sensors 2, 967-974 (2017). doi: 10.1021/acssensors.7b00230 |
[28] |
Kang, D. et al. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516, 222-226 (2014). doi: 10.1038/nature14002 |
[29] |
Gimel, J. C. & Brown, W. A light scattering investigation of the sodium dodecyl sulfate–lysozyme system. The Journal of chemical physics 104, 8112-8117 (1996). doi: 10.1063/1.471496 |
[30] |
Fang, Y. S. et al. Cryo‐transferred ultrathin and stretchable epidermal electrodes. Small 16, 2000450 (2020). doi: 10.1002/smll.202000450 |
[31] |
Kim, J. H. et al. Highly conformable, transparent electrodes for epidermal electronics. Nano Letters 18, 4531-4540 (2018). doi: 10.1021/acs.nanolett.8b01743 |
[32] |
Liu, G. S. et al. Electrically robust silver nanowire patterns transferrable onto various substrates. Nanoscale 8, 5507-5515 (2016). doi: 10.1039/C5NR06237C |
[33] |
Kandeepan, S. et al. OMCVD gold nanoparticles covalently attached to polystyrene for biosensing applications. Chemical Vapor Deposition 21 , 275-280 (2015). |
[34] |
Wang, H. B. et al. Interfacial capillary-force-driven self-assembly of monolayer colloidal crystals for supersensitive plasmonic sensors. Small 16, 1905480 (2020). doi: 10.1002/smll.201905480 |
[35] |
Xie, X. Y. et al. A rainbow structural color by stretchable photonic crystal for saccharide identification. ACS Nano 16, 20094-20099 (2022). doi: 10.1021/acsnano.2c08708 |
[36] |
Liu, G. S. et al. Ultrasonically patterning silver nanowire–acrylate composite for highly sensitive and transparent strain sensors based on parallel cracks. ACS Applied Materials & Interfaces 12, 47729-47738 (2020). |
[37] |
Kang, H. L. et al. Research progress on two-dimensional layered MXene/elastomer nanocomposites. Polymers 14, 4094 (2022). doi: 10.3390/polym14194094 |
[38] |
Wang, L. et al. Tailoring strain sensor performance by biwetting–dewetting assembly. ACS Applied Electronic Materials 6, 8242-8250 (2024). doi: 10.1021/acsaelm.4c01529 |
[39] |
Liu, G. S. et al. Optically programmable plateau–rayleigh instability for high-resolution and scalable morphology manipulation of silver nanowires for flexible optoelectronics. ACS Applied Materials & Interfaces 12, 53984-53993 (2020). |
[40] |
Zhang, H. et al. Anisotropic, wrinkled, and crack-bridging structure for ultrasensitive, highly selective multidirectional strain sensors. Nano-Micro Letters 13, 122 (2021). doi: 10.1007/s40820-021-00615-5 |
[41] |
Kim, I. et al. A photonic sintering derived Ag flake/nanoparticle-based highly sensitive stretchable strain sensor for human motion monitoring. Nanoscale 10, 7890-7897 (2018). doi: 10.1039/C7NR09421C |
[42] |
Wang, T. et al. High sensitivity, wide linear-range strain sensor based on MXene/AgNW composite film with hierarchical microcrack. Small 19, 2304033 (2023). doi: 10.1002/smll.202304033 |
[43] |
Pu, J. H. et al. A strain localization directed crack control strategy for designing MXene-based customizable sensitivity and sensing range strain sensors for full-range human motion monitoring. Nano Energy 74, 104814 (2020). doi: 10.1016/j.nanoen.2020.104814 |
[44] |
Jung, S. et al. Reverse-micelle-induced porous pressure-sensitive rubber for wearable human-machine interfaces. Advanced Materials 26, 4825-4830 (2014). doi: 10.1002/adma.201401364 |
[45] |
Liu, S. Y. et al. Strategies for body-conformable electronics. Matter 5, 1104-1136 (2022). doi: 10.1016/j.matt.2022.02.006 |
[46] |
Liu, H. Y. et al. Fast self-assembly of photonic crystal hydrogel for wearable strain and temperature sensor. Small Methods 6, 2200461 (2022). doi: 10.1002/smtd.202200461 |
[47] |
Zhao, R. L. et al. Dual-mode fiber strain sensor based on mechanochromic photonic crystal and transparent conductive elastomer for human motion detection. ACS Applied Materials & Interfaces 15, 16063-16071 (2023). |
[48] |
Wang, Y. et al. Bio-inspired stretchable, adhesive, and conductive structural color film for visually flexible electronics. Advanced Functional Materials 30, 2000151 (2020). doi: 10.1002/adfm.202000151 |
[49] |
Chen, W. et al. Flexible, transparent, and conductive Ti3C2T x MXene–silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding. ACS Nano 14, 16643-16653 (2020). doi: 10.1021/acsnano.0c01635 |