[1] Zhang, Y. F. et al. Flexible antiswelling photothermal‐therapy MXene hydrogel‐based epidermal sensor for intelligent human–machine interfacing. Advanced Functional Materials 33, 2300299 (2023). doi: 10.1002/adfm.202300299
[2] Shen, Z. R. et al. Progress of flexible strain sensors for physiological signal monitoring. Biosensors and Bioelectronics 211, 114298 (2022). doi: 10.1016/j.bios.2022.114298
[3] Li, W. Z. et al. Multi-bioinspired functional conductive hydrogel patches for wound healing management. Advanced Science 10, 2301479 (2023). doi: 10.1002/advs.202301479
[4] Yang, Q. S. et al. Mixed-modality speech recognition and interaction using a wearable artificial throat. Nature Machine Intelligence 5, 169-180 (2023). doi: 10.1038/s42256-023-00616-6
[5] Wei, Y. H. et al. A wearable skinlike ultra-sensitive artificial graphene throat. ACS Nano 13, 8639-8647 (2019). doi: 10.1021/acsnano.9b03218
[6] Bauer, S. et al. 25th anniversary article: a soft future: from robots and sensor skin to energy harvesters. Advanced Materials 26 , 149-162 (2014).
[7] Liu, H. G. et al. Machine-learning mental-fatigue-measuring μm-thick elastic epidermal electronics (MMMEEE). Nano Letters 24 , 16221-16230
[8] Wang, Y. L. et al. 3D geometrically structured PANI/CNT-decorated polydimethylsiloxane active pressure and temperature dual-parameter sensors for man–machine interaction applications. Journal of Materials Chemistry A 8 , 15167-15176 (2020).
[9] Yin, R. Y. et al. Wearable sensors‐enabled human–machine interaction systems: from design to application. Advanced Functional Materials 31, 2008936 (2021). doi: 10.1002/adfm.202008936
[10] Chen, Y. et al. Self-assembly, alignment, and patterning of metal nanowires. Nanoscale Horizons 7, 1299-1339 (2022). doi: 10.1039/D2NH00313A
[11] Yang, H. T. et al. Computational design of ultra-robust strain sensors for soft robot perception and autonomy. Nature Communications 15, 1636 (2024). doi: 10.1038/s41467-024-45786-y
[12] Wang, Y. et al. Liquid metal droplets-based elastomers from electric toothbrush-inspired revolving microfluidics. Advanced Materials 35, 2211731 (2023). doi: 10.1002/adma.202211731
[13] Xu, H. et al. Dual‐mode wearable strain sensor based on graphene/colloidal crystal films for simultaneously detection of subtle and large human motions. Advanced Materials Technologies 5, 1901056 (2020). doi: 10.1002/admt.201901056
[14] Snapp, P. et al. Colloidal photonic crystal strain sensor integrated with deformable graphene phototransducer. Advanced Functional Materials 29, 1902216 (2019). doi: 10.1002/adfm.201902216
[15] Teyssier, J. et al. Photonic crystals cause active colour change in chameleons. Nature Communications 6, 6368 (2015). doi: 10.1038/ncomms7368
[16] Saenko, S. V. et al. Precise colocalization of interacting structural and pigmentary elements generates extensive color pattern variation in Phelsumalizards. BMC Biology 11, 105 (2013). doi: 10.1186/1741-7007-11-105
[17] Han, F. et al. Materials with tunable optical properties for wearable epidermal sensing in health monitoring. Advanced Materials 34, 2109055 (2022). doi: 10.1002/adma.202109055
[18] Sahu, R. R. et al. Single-step fabrication of liquid gallium nanoparticles via capillary interaction for dynamic structural colours. Nature Nanotechnology 19, 766-774 (2024). doi: 10.1038/s41565-024-01625-1
[19] Zhao, Y. J. et al. Bio-inspired variable structural color materials. Chemical Society Reviews 41, 3297-3317 (2012). doi: 10.1039/c2cs15267c
[20] Zhang, H. et al. Mechanochromic optical/electrical skin for ultrasensitive dual-signal sensing. ACS Nano 17, 5921-5934 (2023). doi: 10.1021/acsnano.3c00015
[21] Sun, Y. D. et al. Biomimetic chromotropic photonic‐ionic skin with robust resilience, adhesion, and stability. Advanced Functional Materials 32, 2204467 (2022). doi: 10.1002/adfm.202204467
[22] Zhang, H. et al. Stretchable and conductive composite structural color hydrogel films as bionic electronic skins. Advanced Science 8, 2102156 (2021). doi: 10.1002/advs.202102156
[23] Li, X. et al. Mechanochromic and conductive chiral nematic nanostructured film for bioinspired ionic skins. ACS Nano 17, 12829-12841 (2023). doi: 10.1021/acsnano.3c04199
[24] Peng, L., Hou, L. & Wu, P. Y. Synergetic lithium and hydrogen bonds endow liquid-free photonic ionic elastomer with mechanical robustness and electrical/optical dual-output. Advanced Materials 35, 2211342 (2023). doi: 10.1002/adma.202211342
[25] Hu, Y. et al. Chameleon-inspired brilliant and sensitive mechano-chromic photonic skins for self-reporting the strains of earthworms. ACS Applied Materials & Interfaces 14, 11672-11680 (2022).
[26] Li, X. K. et al. Polymerizable deep eutectic solvent‐based skin‐like elastomers with dynamic schemochrome and self‐healing ability. Small 18, 2201012 (2022). doi: 10.1002/smll.202201012
[27] Yang, T. T. et al. A wearable and highly sensitive graphene strain sensor for precise home-based pulse wave monitoring. ACS Sensors 2, 967-974 (2017). doi: 10.1021/acssensors.7b00230
[28] Kang, D. et al. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516, 222-226 (2014). doi: 10.1038/nature14002
[29] Gimel, J. C. & Brown, W. A light scattering investigation of the sodium dodecyl sulfate–lysozyme system. The Journal of chemical physics 104, 8112-8117 (1996). doi: 10.1063/1.471496
[30] Fang, Y. S. et al. Cryo‐transferred ultrathin and stretchable epidermal electrodes. Small 16, 2000450 (2020). doi: 10.1002/smll.202000450
[31] Kim, J. H. et al. Highly conformable, transparent electrodes for epidermal electronics. Nano Letters 18, 4531-4540 (2018). doi: 10.1021/acs.nanolett.8b01743
[32] Liu, G. S. et al. Electrically robust silver nanowire patterns transferrable onto various substrates. Nanoscale 8, 5507-5515 (2016). doi: 10.1039/C5NR06237C
[33] Kandeepan, S. et al. OMCVD gold nanoparticles covalently attached to polystyrene for biosensing applications. Chemical Vapor Deposition 21 , 275-280 (2015).
[34] Wang, H. B. et al. Interfacial capillary-force-driven self-assembly of monolayer colloidal crystals for supersensitive plasmonic sensors. Small 16, 1905480 (2020). doi: 10.1002/smll.201905480
[35] Xie, X. Y. et al. A rainbow structural color by stretchable photonic crystal for saccharide identification. ACS Nano 16, 20094-20099 (2022). doi: 10.1021/acsnano.2c08708
[36] Liu, G. S. et al. Ultrasonically patterning silver nanowire–acrylate composite for highly sensitive and transparent strain sensors based on parallel cracks. ACS Applied Materials & Interfaces 12, 47729-47738 (2020).
[37] Kang, H. L. et al. Research progress on two-dimensional layered MXene/elastomer nanocomposites. Polymers 14, 4094 (2022). doi: 10.3390/polym14194094
[38] Wang, L. et al. Tailoring strain sensor performance by biwetting–dewetting assembly. ACS Applied Electronic Materials 6, 8242-8250 (2024). doi: 10.1021/acsaelm.4c01529
[39] Liu, G. S. et al. Optically programmable plateau–rayleigh instability for high-resolution and scalable morphology manipulation of silver nanowires for flexible optoelectronics. ACS Applied Materials & Interfaces 12, 53984-53993 (2020).
[40] Zhang, H. et al. Anisotropic, wrinkled, and crack-bridging structure for ultrasensitive, highly selective multidirectional strain sensors. Nano-Micro Letters 13, 122 (2021). doi: 10.1007/s40820-021-00615-5
[41] Kim, I. et al. A photonic sintering derived Ag flake/nanoparticle-based highly sensitive stretchable strain sensor for human motion monitoring. Nanoscale 10, 7890-7897 (2018). doi: 10.1039/C7NR09421C
[42] Wang, T. et al. High sensitivity, wide linear-range strain sensor based on MXene/AgNW composite film with hierarchical microcrack. Small 19, 2304033 (2023). doi: 10.1002/smll.202304033
[43] Pu, J. H. et al. A strain localization directed crack control strategy for designing MXene-based customizable sensitivity and sensing range strain sensors for full-range human motion monitoring. Nano Energy 74, 104814 (2020). doi: 10.1016/j.nanoen.2020.104814
[44] Jung, S. et al. Reverse-micelle-induced porous pressure-sensitive rubber for wearable human-machine interfaces. Advanced Materials 26, 4825-4830 (2014). doi: 10.1002/adma.201401364
[45] Liu, S. Y. et al. Strategies for body-conformable electronics. Matter 5, 1104-1136 (2022). doi: 10.1016/j.matt.2022.02.006
[46] Liu, H. Y. et al. Fast self-assembly of photonic crystal hydrogel for wearable strain and temperature sensor. Small Methods 6, 2200461 (2022). doi: 10.1002/smtd.202200461
[47] Zhao, R. L. et al. Dual-mode fiber strain sensor based on mechanochromic photonic crystal and transparent conductive elastomer for human motion detection. ACS Applied Materials & Interfaces 15, 16063-16071 (2023).
[48] Wang, Y. et al. Bio-inspired stretchable, adhesive, and conductive structural color film for visually flexible electronics. Advanced Functional Materials 30, 2000151 (2020). doi: 10.1002/adfm.202000151
[49] Chen, W. et al. Flexible, transparent, and conductive Ti3C2T x MXene–silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding. ACS Nano 14, 16643-16653 (2020). doi: 10.1021/acsnano.0c01635