[1] Sun, J. Y., Bhushan, B. & Tong, J. Structural coloration in nature. RSC Advances 3, 14862-14889 (2013). doi: 10.1039/c3ra41096j
[2] Kinoshita, S., Yoshioka, S. & Miyazaki, J. Physics of structural colors. Reports on Progress in Physics 71, 076401 (2008). doi: 10.1088/0034-4885/71/7/076401
[3] Kristensen, A. et al. Plasmonic colour generation. Nature Reviews Materials 2, 16088 (2016).
[4] Yang, W. H. et al. All-dielectric metasurface for high-performance structural color. Nature Communications 11, 1864 (2020). doi: 10.1038/s41467-020-15773-0
[5] Liu, X., Huang, Z. & Zang, J. F. All-dielectric silicon nanoring metasurface for full-color printing. Nano Letters 20, 8739-8744 (2020). doi: 10.1021/acs.nanolett.0c03596
[6] Chen, F. X. et al. Bio-inspired structural colors and their applications. Chemical Communications 57, 13448-13464 (2021). doi: 10.1039/D1CC04386B
[7] Fu, F. F. et al. Bioinspired living structural color hydrogels. Science Robotics 3, eaar8580 (2018). doi: 10.1126/scirobotics.aar8580
[8] Noh, H. et al. How noniridescent colors are generated by quasi-ordered structures of bird feathers. Advanced Materials 22, 2871-2880 (2010).
[9] Fu, Y. L. et al. Structural colors: from natural to artificial systems. WIREs Nanomedicine and Nanobiotechnology 8, 758-775 (2016). doi: 10.1002/wnan.1396
[10] Xuan, Z. Y. et al. Artificial structural colors and applications. The Innovation 2, 100081 (2021).
[11] Yang, B. et al. Structural colors in metasurfaces: principle, design and applications. Materials Chemistry Frontiers 3, 750-761 (2019). doi: 10.1039/C9QM00043G
[12] ElKabbash, M. et al. Fano resonant optical coatings platform for full gamut and high purity structural colors. Nature Communications 14, 3960 (2023). doi: 10.1038/s41467-023-39602-2
[13] Badloe, T. et al. Liquid crystal-powered Mie resonators for electrically tunable photorealistic color gradients and dark blacks. Light: Science & Applications 11 , 118 (2022).
[14] Hu, Y. Q. et al. 3D-integrated metasurfaces for full-colour holography. Light: Science & Applications 8 , 86 (2019).
[15] Fan, W. et al. Iridescence-controlled and flexibly tunable retroreflective structural color film for smart displays. Science Advances 5, eaaw8755 (2019). doi: 10.1126/sciadv.aaw8755
[16] Neubrech, F., Duan, X. Y. & Liu, N. Dynamic plasmonic color generation enabled by functional materials. Science Advances 6, eabc2709 (2020). doi: 10.1126/sciadv.abc2709
[17] Liu, Y., Hu, J. & Wu, Z. H. Fabrication of coatings with structural color on a wood surface. Coatings 10, 32 (2020). doi: 10.3390/coatings10010032
[18] Kumar, K. et al. Printing colour at the optical diffraction limit. Nature Nanotechnology 7, 557-561 (2012). doi: 10.1038/nnano.2012.128
[19] Manfrinato, V. R. et al. Resolution limits of electron-beam lithography toward the atomic scale. Nano Letters 13, 1555-1558 (2013).
[20] Zhu, X. L. et al. Plasmonic colour laser printing. Nature Nanotechnology 11, 325-329 (2016). doi: 10.1038/nnano.2015.285
[21] Chen, Y. Q. et al. Dynamic color displays using stepwise cavity resonators. Nano Letters 17, 5555-5560 (2017). doi: 10.1021/acs.nanolett.7b02336
[22] Yang, Z. M. et al. Reflective color filters and monolithic color printing based on asymmetric Fabry–Perot cavities using nickel as a broadband absorber. Advanced Optical Materials 4, 1196-1202 (2016). doi: 10.1002/adom.201600110
[23] Hentschel, M. et al. Dielectric Mie voids: confining light in air. Light: Science & Applications 12 , 3 (2023).
[24] Yimam, D. T. et al. 3D nanostructuring of phase-change materials using focused ion beam toward versatile optoelectronics applications. Advanced Materials 36 , 2303502 (2024).
[25] Guo, L. J. Nanoimprint lithography: methods and material requirements. Advanced Materials 19, 495-513 (2007).
[26] Espinha, A. et al. Hydroxypropyl cellulose photonic architectures by soft nanoimprinting lithography. Nature Photonics 12, 343-348 (2018). doi: 10.1038/s41566-018-0152-1
[27] Bai, L. et al. Large-scale noniridescent structural color printing enabled by infiltration-driven nonequilibrium colloidal assembly. Advanced Materials 30, 1705667 (2018). doi: 10.1002/adma.201705667
[28] Wang, J. W. et al. Structural color of colloidal clusters as a tool to investigate structure and dynamics. Advanced Functional Materials 30, 1907730 (2020). doi: 10.1002/adfm.201907730
[29] Liu, T. Y. et al. Effect of particles of irregular size on the microstructure and structural color of self-assembled colloidal crystals. Langmuir 37, 13300-13308 (2021).
[30] Ito, M. M. et al. Structural colour using organized microfibrillation in glassy polymer films. Nature 570, 363-367 (2019). doi: 10.1038/s41586-019-1299-8
[31] Das, G. et al. Light-driven self-assembly of spiropyran-functionalized covalent organic framework. Nature Communications 14, 3765 (2023). doi: 10.1038/s41467-023-39402-8
[32] Horák, M. et al. Comparative study of plasmonic antennas fabricated by electron beam and focused ion beam lithography. Scientific Reports 8, 9640 (2018). doi: 10.1038/s41598-018-28037-1
[33] Wu, D. X., Rajput, N. S. & Luo, X. C. Nanoimprint lithography-the past, the present and the future. Current Nanoscience 12, 712-724 (2016).
[34] Zhang, J. H. et al. Colloidal self-assembly meets nanofabrication: from two-dimensional colloidal crystals to nanostructure arrays. Advanced Materials 22, 4249-4269 (2010). doi: 10.1002/adma.201000755
[35] Liu, H. G., Lin, W. X. & Hong, M. H. Surface coloring by laser irradiation of solid substrates. APL Photonics 4, 051101 (2019). doi: 10.1063/1.5089778
[36] Teutoburg-Weiss, S. et al. Structural colors with embedded anti-counterfeit features fabricated by laser-based methods. Optics & Laser Technology 151, 108012 (2022).
[37] Zhang, Y. Y. et al. Bioinspired micro/nanostructured surfaces prepared by femtosecond laser direct writing for multi-functional applications. International Journal of Extreme Manufacturing 2, 032002 (2020).
[38] Wang, Z. et al. 3D imprinting of voxel-level structural colors in lithium niobate crystal. Advanced Materials 35 , 2303256 (2023).
[39] Sun, K. et al. Three-dimensional direct lithography of stable perovskite nanocrystals in glass. Science 375, 307-310 (2022). doi: 10.1126/science.abj2691
[40] Liu, Y. et al. Single-pixel-adjustable structural color fabricated using a spatially modulated femtosecond laser. ACS Applied Materials & Interfaces 15, 49805-49813 (2023).
[41] Shao, L., Zhuo, X. L. & Wang, J. F. Advanced plasmonic materials for dynamic color display. Advanced Materials 30, 1704338 (2018). doi: 10.1002/adma.201704338
[42] Chen, Y. et al. Centimeter scale color printing with grayscale lithography. Advanced Photonics Nexus 1, 026002 (2022).
[43] Sugioka, K. & Cheng, Y. Ultrafast lasers—reliable tools for advanced materials processing. Light: Science & Applications 3 , e149 (2014).
[44] Malinauskas, M. et al. Ultrafast laser processing of materials: from science to industry. Light: Science & Applications 5 , e16133 (2016).
[45] Guo, B. S. et al. Ultrafast dynamics observation during femtosecond laser-material interaction. International Journal of Extreme Manufacturing 1, 032004 (2019). doi: 10.1088/2631-7990/ab3a24
[46] Jiang, L. et al. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application. Light: Science & Applications 7 , 17134 (2018).
[47] Guay, J. M. et al. Laser-induced plasmonic colours on metals. Nature Communications 8, 16095 (2017). doi: 10.1038/ncomms16095
[48] Wang, Y. X., Ren, F. & Ding, T. Generation of high quality, uniform and stable plasmonic colorants via laser direct writing. Advanced Optical Materials 8, 2000164 (2020). doi: 10.1002/adom.202000164
[49] Mao, F. et al. Direct laser writing of gold nanostructures: application to data storage and color nanoprinting. Plasmonics 13, 2285-2291 (2018).
[50] Guay, J. M. et al. Laser-written colours on silver: optical effect of alumina coating. Nanophotonics 8, 807-822 (2019). doi: 10.1515/nanoph-2018-0202
[51] Geng, J. et al. Surface plasmons interference nanogratings: wafer-scale laser direct structuring in seconds. Light: Science & Applications 11 , 189 (2022).
[52] Geng, J. et al. Controllable generation of large-scale highly regular gratings on Si films. Light: Advanced Manufacturing 2, 274-282 (2021).
[53] Bonse, J. & Gräf, S. Maxwell meets marangoni—a review of theories on laser-induced periodic surface structures. Laser & Photonics Reviews 14, 2000215 (2020).
[54] Zhang, D. S., Liu, R. J. & Li, Z. G. Irregular LIPSS produced on metals by single linearly polarized femtosecond laser. International Journal of Extreme Manufacturing 4, 015102 (2022).
[55] Geng, J. et al. Quasicylindrical waves for ordered nanostructuring. Nano Letters 22, 9658-9663 (2022). doi: 10.1021/acs.nanolett.2c03851
[56] Choi, S. et al. Structural color printing via polymer-assisted photochemical deposition. Light: Science & Applications 11 , 84 (2022).
[57] Veiko, V. P. et al. Laser paintbrush as a tool for modern art. Optica 8, 577-585 (2021). doi: 10.1364/OPTICA.420074
[58] Groussin, B. et al. Efficient composite colorization of copper by spatially controlled oxidation with deep-UV ultrafast lasers. Advanced Optical Materials 12, 2302071 (2024). doi: 10.1002/adom.202302071
[59] Kim, S. J. et al. Color of copper/copper oxide. Advanced Materials 33, 2007345 (2021).
[60] Gaidys, M. et al. Stainless steel colouring using burst and Biburst mode ultrafast laser irradiation. Optics & Laser Technology 174, 110561 (2024).
[61] Veiko, V. et al. Controlled oxide films formation by nanosecond laser pulses for color marking. Optics Express 22, 24342-24347 (2014). doi: 10.1364/OE.22.024342
[62] Geng, J. et al. High-speed laser writing of structural colors for full-color inkless printing. Nature Communications 14, 565 (2023). doi: 10.1038/s41467-023-36275-9
[63] Winter, J. et al. Ultrashort single-pulse laser ablation of stainless steel, aluminium, copper and its dependence on the pulse duration. Optics Express 29, 14561-14581 (2021). doi: 10.1364/OE.421097
[64] Zinnecker, V. et al. Ultrashort pulse laser ablation of steel in ambient air. Optics & Laser Technology 148, 107757 (2022).
[65] Kats, M. A. et al. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nature Materials 12, 20-24 (2013).
[66] Geng, J. et al. Wear-resistant surface coloring by ultrathin optical coatings. PhotoniX 3, 14 (2022). doi: 10.1186/s43074-022-00061-5
[67] Manshina, A. A. et al. The second laser revolution in chemistry: emerging laser technologies for precise fabrication of multifunctional nanomaterials and nanostructures. Advanced Functional Materials 34, 2405457 (2024). doi: 10.1002/adfm.202405457
[68] Öktem, B. et al. Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses. Nature Photonics 7, 897-901 (2013). doi: 10.1038/nphoton.2013.272