[1] |
Nicholls, L. H. et al. Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials. Nat. Photonics 11, 628-633 (2017). doi: 10.1038/s41566-017-0002-6 |
[2] |
Galvez, E. J. et al. Multitwist mobius strips and twisted ribbons in the polarization of paraxial light beams. Sci. Rep. 7, 13653 (2017). doi: 10.1038/s41598-017-13199-1 |
[3] |
Ding, Y. T. & Pau, S. Circularly and elliptically polarized light under water and the Umov effect. Light: Sci. Appl. 8, 32 (2019). doi: 10.1038/s41377-019-0143-0 |
[4] |
Öğüt, E. & Şendur, K. Circularly and elliptically polarized near-field radiation from nanoscale subwavelength apertures. Appl. Phys. Lett. 96, 141104 (2010). doi: 10.1063/1.3371696 |
[5] |
Nikolova, L. et al. Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy. Appl. Opt. 35, 3835-3840 (1996). doi: 10.1364/AO.35.003835 |
[6] |
Zhang, H. Y. et al. Three-dimensional polarization ray tracing calculus for partially polarized light. Opt. Express 25, 26973-26986 (2017). doi: 10.1364/OE.25.026973 |
[7] |
Yang, Y. et al. Circularly polarized light detection by a chiral organic semiconductor transistor. Nat. Photonics 7, 634-638 (2013). doi: 10.1038/nphoton.2013.176 |
[8] |
Lee, C. T., Lin, H. Y. & Tsai, C. H. Designs of broadband and wide-view patterned polarizers for stereoscopic 3D displays. Opt. Express 18, 27079-27094 (2010). doi: 10.1364/OE.18.027079 |
[9] |
Hao, C. L. et al. Circularly polarized light triggers biosensing based on chiral assemblies. Chemistry 25, 12235-12240 (2019). doi: 10.1002/chem.201901721 |
[10] |
Farshchi, R. et al. Optical communication of spin information between light emitting diodes. Appl. Phys. Lett. 98, 162508 (2011). doi: 10.1063/1.3582917 |
[11] |
Stanciu, C. D. et al. All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 99, 047601 (2007). doi: 10.1103/PhysRevLett.99.047601 |
[12] |
Xu, L. R. et al. Recoverable photolithographic patterning for polarized display and encryption. Adv. Mater. Technol. 5, 2000373 (2020). |
[13] |
Basiri, A. et al. Nature-inspired chiral metasurfaces for circular polarization detection and full-stokes polarimetric measurements. Light: Sci. Appl. 8, 78 (2019). doi: 10.1038/s41377-019-0184-4 |
[14] |
Baek, K. et al. Simultaneous emission of orthogonal handedness in circular polarization from a single luminophore. Light: Sci. Appl. 8, 120 (2019). doi: 10.1038/s41377-019-0232-0 |
[15] |
Semnani, B. et al. Spin-preserving chiral photonic crystal mirror. Light: Sci. Appl. 9, 23 (2020). doi: 10.1038/s41377-020-0256-5 |
[16] |
Zhuang, T. T. et al. Regioselective magnetization in semiconducting nanorods. Nat. Nanotechnol. 15, 192-197 (2020). doi: 10.1038/s41565-019-0606-8 |
[17] |
Mun, J. et al. Electromagnetic chirality: from fundamentals to nontraditional chiroptical phenomena. Light: Sci. Appl. 9, 139 (2020). doi: 10.1038/s41377-020-00367-8 |
[18] |
Lee, S., Yoo, S. & Park, Q. H. Microscopic origin of surface-enhanced circular dichroism. ACS Photonics 4, 2047-2052 (2017). doi: 10.1021/acsphotonics.7b00479 |
[19] |
Qiu, S. et al. Stereochemistry of the tadalafil diastereoisomers: a critical assessment of vibrational circular dichroism, electronic circular dichroism, and optical rotatory dispersion. J. Med. Chem. 56, 8903-8914 (2013). doi: 10.1021/jm401407w |
[20] |
Tan, J. Y. et al. Spiro[pyrrol-benzopyran]-based probe with high asymmetry for chiroptical sensing via circular dichroism. Chem. Commun. 55, 7438-7441 (2019). doi: 10.1039/C9CC02946J |
[21] |
Ma, W. et al. Chiral inorganic nanostructures. Chem. Rev. 117, 8041-8093 (2017). doi: 10.1021/acs.chemrev.6b00755 |
[22] |
Gansel, J. K. et al. Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513-1515 (2009). doi: 10.1126/science.1177031 |
[23] |
Hentschel, M. et al. Three-dimensional chiral plasmonic oligomers. Nano Lett. 12, 2542-2547 (2012). doi: 10.1021/nl300769x |
[24] |
Lv, J. W. et al. Gold nanowire chiral ultrathin films with ultrastrong and broadband optical activity. Angew. Chem. Int. Ed. 56, 5055-5060 (2017). doi: 10.1002/anie.201701512 |
[25] |
Sánchez-Carnerero, E. M. et al. Circularly polarized luminescence from simple organic molecules. Chemistry 21, 13488-13500 (2015). doi: 10.1002/chem.201501178 |
[26] |
Kumar, J., Nakashima, T. & Kawai, T. Circularly polarized luminescence in chiral molecules and supramolecular assemblies. J. Phys. Chem. Lett. 6, 3445-3452 (2015). doi: 10.1021/acs.jpclett.5b01452 |
[27] |
Han, J. M. et al. Recent progress on circularly polarized luminescent materials for organic optoelectronic devices. Adv. Opt. Mater. 6, 1800538 (2018). doi: 10.1002/adom.201800538 |
[28] |
Zhou, Y. H. et al. Highly efficient organic light-emitting diodes with low efficiency roll-off based on iridium complexes containing pinene sterically hindered spacer. Adv. Opt. Mater. 4, 1726-1731 (2016). doi: 10.1002/adom.201600315 |
[29] |
Deng, M. et al. Yellow circularly polarized luminescence from C1-symmetrical copper(Ⅰ) complexes. Angew. Chem. Int. Ed. 59, 1228-1231 (2020). doi: 10.1002/anie.201913672 |
[30] |
Burrezo, P. M. et al. Organic free radicals as circularly polarized luminescence emitters. Angew. Chem. Int. Ed. 58, 16282-16288 (2019). doi: 10.1002/anie.201909398 |
[31] |
Maeda, C. et al. Azahelicene-fused BODIPY analogues showing circularly polarized luminescence. Angew. Chem. Int. Ed. 59, 7813-7817 (2020). doi: 10.1002/anie.202001186 |
[32] |
Dai, C. H. et al. Far-red/near-infrared fluorescent conjugated polymer nanoparticles with size-dependent chirality and cell imaging applications. Polym. Chem. 6, 3962-3969 (2015). doi: 10.1039/C5PY00344J |
[33] |
Ikai, T. et al. Circularly polarized luminescent triptycene-based polymers. ACS Macro Lett. 7, 364-369 (2018). doi: 10.1021/acsmacrolett.8b00106 |
[34] |
Zhao, Z. et al. Aggregation-induced emission: new vistas at the aggregate level. Angew. Chem. Int. Ed. 59, 9888-9907 (2020). doi: 10.1002/anie.201916729 |
[35] |
Ma, K. et al. Boosting the circularly polarized luminescence of small organic molecules via multi-dimensional morphology control. Chem. Sci. 10, 6821-6827 (2019). doi: 10.1039/C9SC01577A |
[36] |
Li, Q. Q. & Li, Z. Molecular packing: another key point for the performance of organic and polymeric optoelectronic materials. Acc. Chem. Res. 53, 962-973 (2020). doi: 10.1021/acs.accounts.0c00060 |
[37] |
Zhang, C. H., Dong, H. Y. & Zhao, Y. S. Rational design, controlled fabrication, and photonic applications of organic composite nanomaterials. Adv. Opt. Mater. 6, 1701193 (2018). doi: 10.1002/adom.201701193 |
[38] |
Kumar, J. et al. Circularly polarized luminescence in supramolecular assemblies of chiral bichromophoric perylene bisimides. Chemistry 19, 14090-14097 (2013). doi: 10.1002/chem.201302146 |
[39] |
Ji, L. K. et al. Dimension-tunable circularly polarized luminescent nanoassemblies with emerging selective chirality and energy transfer. ACS Nano 14, 2373-2384 (2020). doi: 10.1021/acsnano.9b09584 |
[40] |
Liu, M. H., Zhang, L. & Wang, T. Y. Supramolecular chirality in self-assembled systems. Chem. Rev. 115, 7304-7397 (2015). doi: 10.1021/cr500671p |
[41] |
Sang, Y. T. et al. Circularly polarized luminescence in nanoassemblies: generation, amplification, and application. Adv. Mater. 32, 1900110 (2020). doi: 10.1002/adma.201900110 |
[42] |
Shen, Z. C. et al. Strong circularly polarized luminescence from the supramolecular gels of an achiral gelator: tunable intensity and handedness. Chem. Sci. 6, 4267-4272 (2015). doi: 10.1039/C5SC01056J |
[43] |
Wang, F. et al. Amplifiable symmetry breaking in aggregates of vibrating helical molecules. J. Am. Chem. Soc. 142, 16167-16172 (2020). doi: 10.1021/jacs.0c06932 |
[44] |
Li, X. J. et al. Strong CPL of achiral AIE-active dyes induced by supramolecular self-assembly in chiral nematic liquid crystals (AIE-N*-LCs). Chem. Commun. 55, 5179-5182 (2019). doi: 10.1039/C9CC01678C |
[45] |
Song, F. Y. et al. Circularly polarized luminescence from AIEgens. J. Mater. Chem. C 8, 3284-3301 (2020). doi: 10.1039/C9TC07022B |
[46] |
Li, H. K., Li, B. S. & Tang, B. Z. Molecular design, circularly polarized luminescence, and helical self-assembly of chiral aggregation-induced emission molecules. Chemistry14, 674-688 (2019). |
[47] |
Shang, H. X. et al. Multi-color tunable circularly polarized luminescence in one single AIE system. Chem. Sci. 11, 2169-2174 (2020). doi: 10.1039/C9SC05643B |
[48] |
Liu, J. Z. et al. What makes efficient circularly polarised luminescence in the condensed phase: aggregation-induced circular dichroism and light emission. Chem. Sci. 3, 2737-2747 (2012). doi: 10.1039/c2sc20382k |
[49] |
Ng, J. C. Y. et al. Valine-containing silole: synthesis, aggregation-induced chirality, luminescence enhancement, chiral-polarized luminescence and self-assembled structures. J. Mater. Chem. C 2, 4615-4621 (2014). doi: 10.1039/c4tc00432a |
[50] |
Zhang, S. W. et al. Tunable aggregation-induced circularly polarized luminescence of chiral AIEgens via the regulation of mono-/di-substituents of molecules or nanostructures of self-assemblies. Mater. Chem. Front. 3, 2066-2071 (2019). doi: 10.1039/C9QM00358D |
[51] |
Li, H. K. et al. L-valine methyl ester-containing tetraphenylethene: aggregation-induced emission, aggregation-induced circular dichroism, circularly polarized luminescence, and helical self-assembly. Mater. Horiz. 1, 518-521 (2014). doi: 10.1039/C4MH00078A |
[52] |
Huang, G. X. et al. Novel chiral aggregation induced emission molecules: self-assembly, circularly polarized luminescence and copper(Ⅱ) ion detection. Mater. Chem. Front. 2, 1884-1892 (2018). doi: 10.1039/C8QM00294K |
[53] |
Ye, Q. et al. The fabrication of helical fibers with circularly polarized luminescence via ionic linkage of binaphthol and tetraphenylethylene derivatives. J. Mater. Chem. C 4, 1497-1503 (2016). doi: 10.1039/C5TC04174K |
[54] |
Zhou, X. Q. et al. Self-assembly of hierarchical chiral nanostructures based on metal-benzimidazole interactions: chiral nanofibers, nanotubes, and microtubular flowers. Small 12, 4743-4752 (2016). doi: 10.1002/smll.201600842 |
[55] |
Zhao, J. J. et al. High-throughput synthesis of chiroptical nanostructures from synergistic hydrogen-bonded coassemblies. ACS Nano 14, 2522-2532 (2020). doi: 10.1021/acsnano.0c00352 |
[56] |
Guo, Y., Han, Y. & Chen, C. F. Construction of chiral nanoassemblies based on host-guest complexes and their responsive CD and CPL properties: chirality transfer from 2, 6-helic[6]arenes to a stilbazolium derivative. Front. Chem. 7, 543 (2019). doi: 10.3389/fchem.2019.00543 |
[57] |
Yang, D. et al. Chirality and energy transfer amplified circularly polarized luminescence in composite nanohelix. Nat. Commun. 8, 15727 (2017). doi: 10.1038/ncomms15727 |
[58] |
Zhao, T. H. et al. New perspectives to trigger and modulate circularly polarized luminescence of complex and aggregated systems: energy transfer, photon upconversion, charge transfer, and organic radical. Acc. Chem. Res. 53, 1279-1292 (2020). doi: 10.1021/acs.accounts.0c00112 |
[59] |
Yang, D. et al. Photon upconverted circularly polarized luminescence via triplet-triplet annihilation. Adv. Mater. 31, 1805683 (2019). doi: 10.1002/adma.201805683 |
[60] |
Yang, D., Duan, P. F. & Liu, M. H. Dual upconverted and downconverted circularly polarized luminescence in donor-acceptor assemblies. Angew. Chem. Int. Ed. 57, 9357-9361 (2018). doi: 10.1002/anie.201804402 |
[61] |
Han, J. L. et al. Enhanced circularly polarized luminescence in emissive charge-transfer complexes. Angew. Chem. Int. Ed. 58, 7013-7019 (2019). doi: 10.1002/anie.201902090 |
[62] |
Okano, K. et al. Circularly polarized luminescence of rhodamine B in a supramolecular chiral medium formed by a vortex flow. Angew. Chem. Int. Ed. 50, 12474-12477 (2011). doi: 10.1002/anie.201104708 |
[63] |
Albano, G., Pescitelli, G. & Di Bari, L. Chiroptical properties in thin films of π-conjugated systems. Chem. Rev. 120, 10145-10243 (2020). doi: 10.1021/acs.chemrev.0c00195 |
[64] |
Xu, L. et al. Crystallization-driven asymmetric helical assembly of conjugated block copolymers and the aggregation induced white-light emission and circularly polarized luminescence. Angew. Chem. Int. Ed. 59, 16675-16682 (2020). doi: 10.1002/anie.202006561 |
[65] |
Li, F. et al. Red colored CPL emission of chiral 1, 2-DACH-based polymers via chiral transfer of the conjugated chain backbone structure. Polym. Chem. 6, 6802-6805 (2015). doi: 10.1039/C5PY01148E |
[66] |
Zhang, S. W. et al. Aggregation-induced circularly polarized luminescence of an (R)-binaphthyl-based AIE-active chiral conjugated polymer with self-assembled helical nanofibers. Polym. Chem. 6, 2416-2422 (2015). doi: 10.1039/C4PY01689K |
[67] |
Wang, Y. X. et al. Regulating circularly polarized luminescence signals of chiral binaphthyl-based conjugated polymers by tuning dihedral angles of binaphthyl moieties. Macromolecules 49, 5444-5451 (2016). doi: 10.1021/acs.macromol.6b00883 |
[68] |
Di Nuzzo, D. et al. High circular polarization of electroluminescence achieved via self-assembly of a light-emitting chiral conjugated polymer into multidomain cholesteric films. ACS Nano 11, 12713-12722 (2017). doi: 10.1021/acsnano.7b07390 |
[69] |
Liu, Q. M. et al. Circularly polarized luminescence and tunable helical assemblies of aggregation-induced emission amphiphilic polytriazole carrying chiral L-phenylalanine pendants. Macromolecules 53, 6288-6298 (2020). doi: 10.1021/acs.macromol.0c01140 |
[70] |
Meskers, S. C. J. et al. Circular polarization of the fluorescence from films of poly(p-phenylene vinylene) and polythiophene with chiral side chains. Adv. Mater. 12, 589-594 (2000). doi: 10.1002/(SICI)1521-4095(200004)12:8<589::AID-ADMA589>3.0.CO;2-C |
[71] |
Watanabe, K., Iida, H. & Akagi, K. Circularly polarized blue luminescent spherulites consisting of hierarchically assembled ionic conjugated polymers with a helically π-stacked structure. Adv. Mater. 24, 6451-6456 (2012). doi: 10.1002/adma.201203155 |
[72] |
Yang, Y. et al. Induction of circularly polarized electroluminescence from an achiral light-emitting polymer via a chiral small-molecule dopant. Adv. Mater. 25, 2624-2628 (2013). doi: 10.1002/adma.201204961 |
[73] |
Lee, D. M. et al. Control of circularly polarized electroluminescence in induced twist structure of conjugate polymer. Adv. Mater. 29, 1700907 (2017). doi: 10.1002/adma.201700907 |
[74] |
Furukawa, H. et al. The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013). doi: 10.1126/science.1230444 |
[75] |
Zhao, T. H. et al. Dual-mode induction of tunable circularly polarized luminescence from chiral metal-organic frameworks. Research 2020, 6452123 (2020). |
[76] |
Zhang, C. et al. Enantiomeric MOF crystals using helical channels as palettes with bright white circularly polarized luminescence. Adv. Mater. 32, 2002914 (2020). doi: 10.1002/adma.202002914 |
[77] |
Zhao, T. H. et al. Enhanced circularly polarized luminescence from reorganized chiral emitters on the skeleton of a zeolitic imidazolate framework. Angew. Chem. Int. Ed. 58, 4978-4982 (2019). doi: 10.1002/anie.201900052 |
[78] |
Zeng, M. et al. Lanthanide MOFs for inducing molecular chirality of achiral stilbazolium with strong circularly polarized luminescence and efficient energy transfer for color tuning. Chem. Sci. 11, 9154-9161 (2020). doi: 10.1039/D0SC02856H |
[79] |
Tian, W., Zhou, H. P. & Li, L. Hybrid organic-inorganic perovskite photodetectors. Small 13, 1702107 (2017). doi: 10.1002/smll.201702107 |
[80] |
Tian, J. J. et al. Inorganic halide perovskite solar cells: progress and challenges. Adv. Energy Mater. 10, 2000183 (2020). doi: 10.1002/aenm.202000183 |
[81] |
Kim, Y. H. et al. Strategies to achieve high circularly polarized luminescence from colloidal organic-inorganic hybrid perovskite nanocrystals. ACS Nano 14, 8816-8825 (2020). doi: 10.1021/acsnano.0c03418 |
[82] |
Ma, J. Q. et al. Chiral 2D perovskites with a high degree of circularly polarized photoluminescence. ACS Nano 13, 3659-3665 (2019). doi: 10.1021/acsnano.9b00302 |
[83] |
Long, G. K. et al. Chiral-perovskite optoelectronics. Nat. Rev. Mater. 5, 423-439 (2020). doi: 10.1038/s41578-020-0181-5 |
[84] |
Shang, L., Dong, S. J. & Nienhaus, G. U. Ultra-small fluorescent metal nanoclusters: synthesis and biological applications. Nano Today 6, 401-418 (2011). doi: 10.1016/j.nantod.2011.06.004 |
[85] |
Zhang, M. M., Li, K. & Zang, S. Q. Progress in atomically precise coinage metal clusters with aggregation-induced emission and circularly polarized luminescence. Adv. Opt. Mater. 8, 1902152 (2020). doi: 10.1002/adom.201902152 |
[86] |
Noguez, C. & Garzón, I. L. Optically active metal nanoparticles. Chem. Soc. Rev. 38, 757-771 (2009). doi: 10.1039/b800404h |
[87] |
Kong, Y. J. et al. Photoresponsive propeller-like chiral AIE Copper(Ⅰ) clusters. Angew. Chem. Int. Ed. 59, 5336-5340 (2020). doi: 10.1002/anie.201915844 |
[88] |
Zhang, M. M. et al. AIE triggers the circularly polarized luminescence of atomically precise enantiomeric copper(Ⅰ) alkynyl clusters. Angew. Chem. Int. Ed. 58, 10052-10058 (2020). |
[89] |
Han, Z. et al. Ultrastable atomically precise chiral silver clusters with more than 95% quantum efficiency. Sci. Adv. 6, eaay0107 (2020). |
[90] |
Krishnadas, K. R. et al. Chiral functionalization of an atomically precise noble metal cluster: insights into the origin of chirality and photoluminescence. ACS Nano 14, 9687-9700 (2020). doi: 10.1021/acsnano.0c01183 |
[91] |
Knoppe, S. & Bürgi, T. Chirality in thiolate-protected gold clusters. Acc. Chem. Res. 47, 1318-1326 (2014). doi: 10.1021/ar400295d |
[92] |
Yao, L. et al. Circularly polarized luminescence from chiral tetranuclear copper(Ⅰ) iodide clusters. J. Phys. Chem. Lett. 11, 1255-1260 (2020). doi: 10.1021/acs.jpclett.9b03478 |
[93] |
Li, S. et al. Stepwise achievement of circularly polarized luminescence on atomically precise silver clusters. Adv. Sci. 7, 2000738 (2020). doi: 10.1002/advs.202000738 |
[94] |
Kim, B. C. et al. Circularly polarized luminescence induced by chiral super nanospaces. Adv. Funct. Mater. 29, 1903246 (2019). doi: 10.1002/adfm.201903246 |
[95] |
Nitti, A. & Pasini, D. Aggregation-induced circularly polarized luminescence: chiral organic materials for emerging optical technologies. Adv. Mater. 32, 1908021 (2020). doi: 10.1002/adma.201908021 |
[96] |
Ariga, K. et al. Supramolecular chiral nanoarchitectonics. Adv. Mater. 32, 1905657 (2020). doi: 10.1002/adma.201905657 |
[97] |
Jiang, Q. et al. Circularly polarized luminescence of achiral cyanine molecules assembled on DNA templates. J. Am. Chem. Soc. 141, 9490-9494 (2019). doi: 10.1021/jacs.9b03305 |
[98] |
Goto, T. et al. Induction of strong and tunable circularly polarized luminescence of nonchiral, nonmetal, low-molecular-weight fluorophores using chiral nanotemplates. Angew. Chem. Int. Ed. 56, 2989-2993 (2017). doi: 10.1002/anie.201612331 |
[99] |
Han, J. L. et al. Full-color tunable circularly polarized luminescent nanoassemblies of achiral AIEgens in confined chiral nanotubes. Adv. Mater. 29, 1606503 (2017). doi: 10.1002/adma.201606503 |
[100] |
Almeida, A. P. C. et al. Cellulose-based biomimetics and their applications. Adv. Mater. 30, 1703655 (2018). doi: 10.1002/adma.201703655 |
[101] |
Zheng, H. Z. et al. Uncovering the circular polarization potential of chiral photonic cellulose films for photonic applications. Adv. Mater. 30, 1705948 (2018). doi: 10.1002/adma.201705948 |
[102] |
He, J. T. et al. Generation of full-color and switchable circularly polarized luminescence from nonchiral dyes assembled in cholesteric cellulose films. J. Mater. Chem. C 7, 9278-9283 (2019). doi: 10.1039/C9TC01956A |
[103] |
Xu, M. C. et al. Designing hybrid chiral photonic films with circularly polarized room-temperature phosphorescence. ACS Nano 14, 11130-11139 (2020). doi: 10.1021/acsnano.0c02060 |
[104] |
Ye, Q. et al. Solvent polarity driven helicity inversion and circularly polarized luminescence in chiral aggregation induced emission fluorophores. Chem. Sci. 11, 9989-9993 (2020). doi: 10.1039/D0SC04179C |
[105] |
Niu, D. et al. Histidine proton shuttle-initiated switchable inversion of circularly polarized luminescence. ACS Appl. Mater. Interfaces 12, 18148-18156 (2020). doi: 10.1021/acsami.0c02080 |
[106] |
Wang, F. et al. Inversion of circularly polarized luminescence of nanofibrous hydrogels through co-assembly with achiral coumarin derivatives. ACS Nano 13, 7281-7290 (2019). doi: 10.1021/acsnano.9b03255 |
[107] |
Niu, D. et al. Self-assembly through coordination and π-stacking: controlled switching of circularly polarized luminescence. Angew. Chem. Int. Ed. 59, 5946-5950 (2019). |
[108] |
Xue, P. C. et al. Recent progress in the mechanochromism of phosphorescent organic molecules and metal complexes. J. Mater. Chem. C 4, 6688-6706 (2016). doi: 10.1039/C6TC01503D |
[109] |
Zhang, J. et al. Molecular motions in AIEgen crystals: turning on photoluminescence by force-induced filament sliding. J. Am. Chem. Soc. 142, 14608-14618 (2020). doi: 10.1021/jacs.0c06305 |
[110] |
Shang, W. L. et al. Chiral reticular self-assembly of achiral AIEgen into optically pure metal-organic frameworks (MOFs) with dual mechano-switchable circularly polarized luminescence. Angew. Chem. Int. Ed. 59, 12811-12816 (2020). doi: 10.1002/anie.202005703 |
[111] |
Zhang, X. P. et al. Potential switchable circularly polarized luminescence from chiral cyclometalated platinum(Ⅱ) complexes. Inorg. Chem. 54, 143-152 (2015). doi: 10.1021/ic5019136 |
[112] |
Zhang, D. W., Li, M. & Chen, C. F. Recent advances in circularly polarized electroluminescence based on organic light-emitting diodes. Chem. Soc. Rev. 49, 1331-1343 (2020). doi: 10.1039/C9CS00680J |
[113] |
Peeters, E. et al. Circularly polarized electroluminescence from a polymer light-emitting diode. J. Am. Chem. Soc. 119, 9909-9910 (1997). doi: 10.1021/ja971912c |
[114] |
Tao, P. et al. Facile synthesis of highly efficient lepidine-based phosphorescent iridium(Ⅲ) complexes for yellow and white organic light-emitting diodes. Adv. Funct. Mater. 26, 881-894 (2016). doi: 10.1002/adfm.201503826 |
[115] |
Guo, S. et al. Luminescent ion pairs with tunable emission colors for light-emitting devices and electrochromic switches. Chem. Sci. 8, 348-360 (2017). doi: 10.1039/C6SC02837C |
[116] |
Tao, P. et al. Highly efficient blue phosphorescent iridium(Ⅲ) complexes with various ancillary ligands for partially solution-processed organic light-emitting diodes. J. Mater. Chem. C 5, 9306-9314 (2017). doi: 10.1039/C7TC02496G |
[117] |
Han, J. M. et al. Circularly polarized phosphorescent electroluminescence from chiral cationic iridium(Ⅲ) isocyanide complexes. Adv. Opt. Mater. 5, 1700359 (2017). doi: 10.1002/adom.201700359 |
[118] |
Qian, G. W. et al. Chiral platinum-based metallomesogens with highly efficient circularly polarized electroluminescence in solution-processed organic light-emitting diodes. Adv. Opt. Mater. 8, 2000775 (2020). doi: 10.1002/adom.202000775 |
[119] |
Wu, Z. G. et al. Chiral octahydro-binaphthol compound-based thermally activated delayed fluorescence materials for circularly polarized electroluminescence with superior EQE of 32.6% and extremely low efficiency roll-off. Adv. Mater. 31, 1900524 (2019). doi: 10.1002/adma.201900524 |
[120] |
Ji, L. K. et al. Host-guest interaction enabled chiroptical photo-switching and enhanced circularly polarized luminescence. Chem. Commun. 55, 11747-11750 (2019). doi: 10.1039/C9CC06305F |
[121] |
Miao, W. G., Wang, S. & Liu, M. H. Reversible quadruple switching with optical, chiroptical, helicity, and macropattern in self-assembled spiropyran gels. Adv. Funct. Mater. 27, 1701368 (2017). doi: 10.1002/adfm.201701368 |
[122] |
Sun, H. B. et al. Smart responsive phosphorescent materials for data recording and security protection. Nat. Commun. 5, 3601 (2014). doi: 10.1038/ncomms4601 |
[123] |
Ma, Y. et al. Dynamic metal-ligand coordination for multicolour and water-jet rewritable paper. Nat. Commun. 9, 3 (2018). doi: 10.1038/s41467-017-02452-w |
[124] |
She, P. F. et al. Dynamic luminescence manipulation for rewritable and multi-level security printing. Matter 1, 1644-1655 (2019). doi: 10.1016/j.matt.2019.08.016 |
[125] |
Li, H. et al. Stimuli-responsive circularly polarized organic ultralong room temperature phosphorescence. Angew. Chem. Int. Ed. 59, 4756-4762 (2020). doi: 10.1002/anie.201915164 |
[126] |
Imai, Y. et al. A smart sensing method for object identification using circularly polarized luminescence from coordination-driven self-assembly. Angew. Chem. Int. Ed. 57, 8973-8978 (2018). doi: 10.1002/anie.201803833 |
[127] |
Jin, Q. X. et al. Self-assembly of amphiphilic schiff base and selectively turn on circularly polarized luminescence by Al3+. Langmuir 34, 14402-14409 (2018). doi: 10.1021/acs.langmuir.8b03019 |
[128] |
Feng, H. T. et al. Structure, assembly, and function of (latent)-chiral AIEgens. ACS Mater. Lett. 1, 192-202 (2019). doi: 10.1021/acsmaterialslett.9b00116 |
[129] |
Hu, M. et al. Chiral AIEgens—chiral recognition, CPL materials and other chiral applications. Coord. Chem. Rev. 416, 213329 (2020). doi: 10.1016/j.ccr.2020.213329 |
[130] |
Staszak, K. et al. Lanthanides complexes—chiral sensing of biomolecules. Coord. Chem. Rev. 397, 76-90 (2019). doi: 10.1016/j.ccr.2019.06.017 |
[131] |
Zhao, Y. et al. Alkaline-earth metal ion turn-on circularly polarized luminescence and encrypted selective recognition of AMP. Small Methods 4, 2000493 (2020). doi: 10.1002/smtd.202000493 |