[1] Chang, Y. C. et al. High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display. Optics Express 22, 2714-2724 (2014). doi: 10.1364/OE.22.002714
[2] Pagidi, S. et al. Fast switchable micro-lenticular lens arrays using highly transparent nano-polymer dispersed liquid crystals. Advanced Materials Interfaces 6, 1900841 (2019). doi: 10.1002/admi.201900841
[3] He, Z. Q. et al. Adaptive liquid crystal microlens array enabled by two-photon polymerization. Optics Express 26, 21184-21193 (2018). doi: 10.1364/OE.26.021184
[4] Zhan, T. et al. Practical chromatic aberration correction in virtual reality displays enabled by cost-effective ultra-broadband liquid crystal polymer lenses. Advanced Optical Materials 8, 1901360 (2020). doi: 10.1002/adom.201901360
[5] Park, E. H., Kim, M. J. & Kwon, Y. S. Microlens for efficient coupling between LED and optical fiber. IEEE Photonics Technology Letters 11, 439-441 (1999). doi: 10.1109/68.752541
[6] Fan, Z. B. et al. A broadband achromatic metalens array for integral imaging in the visible. Light:Science & Applications 8, 67 (2019).
[7] Lippmann, M. G. Épreuves réversibles donnant la sensation du relief. Journal de Physique Théorique et Appliquée 7, 821-825 (1908).
[8] Wang, W. W. et al. Large-scale microlens arrays on flexible substrate with improved numerical aperture for curved integral imaging 3D display. Scientific Reports 10, 11741 (2020). doi: 10.1038/s41598-020-68620-z
[9] Zhao, Z. F. et al. Bionic-compound-eye structure for realizing a compact integral imaging 3D display in a cell phone with enhanced performance. Optics Letters 45, 1491-1494 (2020). doi: 10.1364/OL.384182
[10] Liu, Y. F. et al. Adaptive focus integral image system design based on fast-response liquid crystal microlens. Journal of Display Technology 7, 674-678 (2011). doi: 10.1109/JDT.2011.2162396
[11] Shin, D. et al. Depth plane adaptive integral imaging system using a vari-focal liquid lens array for realizing augmented reality. Optics Express 28, 5602-5616 (2020). doi: 10.1364/OE.384697
[12] Kim, C. et al. Fabrication of an electrowetting liquid microlens array for a focus tunable integral imaging system. Optics Letters 45, 511-514 (2020). doi: 10.1364/OL.377865
[13] Zhang, Y. A. et al. Electrically high-resistance liquid crystal micro-lens arrays with high performances for integral imaging 3D display. Optics Communications 462, 125299 (2020). doi: 10.1016/j.optcom.2020.125299
[14] Dong, L. et al. Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 442, 551-554 (2006). doi: 10.1038/nature05024
[15] Holzner, G. et al. An optofluidic system with integrated microlens arrays for parallel imaging flow cytometry. Lab on A Chip 18, 3631-3637 (2018). doi: 10.1039/C8LC00593A
[16] Nagelberg, S. et al. Reconfigurable and responsive droplet-based compound micro-lenses. Nature Communications 8, 14673 (2017). doi: 10.1038/ncomms14673
[17] Ren, H. W. & Wu, S. T. Tunable-focus liquid microlens array using dielectrophoretic effect. Optics Express 16, 2646-2652 (2008). doi: 10.1364/OE.16.002646
[18] Song, X. M. et al. Liquid lens with large focal length tunability fabricated in a polyvinyl chloride/dibutyl phthalate gel tube. Langmuir 36, 1430-1436 (2020). doi: 10.1021/acs.langmuir.9b03585
[19] Afridi, A. et al. Electrically driven varifocal silicon metalens. ACS Photonics 5, 4497-4503 (2018). doi: 10.1021/acsphotonics.8b00948
[20] He, Q., Sun, S. L. & Zhou, L. Tunable/reconfigurable metasurfaces: physics and applications. Research 2019, 1849272 (2019).
[21] She, A. L. et al. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Science Advances 4, eaap9957 (2018). doi: 10.1126/sciadv.aap9957
[22] Archetti, A. et al. Thermally reconfigurable metalens. Nanophotonics 11, 3969-3980 (2022). doi: 10.1515/nanoph-2022-0147
[23] Shalaginov, M. Y. et al. Reconfigurable all-dielectric metalens with diffraction-limited performance. Nature Communications 12, 1225 (2021). doi: 10.1038/s41467-021-21440-9
[24] Badloe, T. et al. Electrically tunable bifocal metalens with diffraction-limited focusing and imaging at visible wavelengths. Advanced Science 8, 2102646 (2021). doi: 10.1002/advs.202102646
[25] Kim J. et al. Tunable metasurfaces towards versatile metalenses and metaholograms: a review. Advanced Photonics 4, 024001 (2022).
[26] Moon S. W. et al. Tutorial on metalenses for advanced flat optics: design, fabrication, and critical considerations. Journal of Applied Physics 131, 091101 (2022). doi: 10.1063/5.0078804
[27] Chandra, D., Yang, S. & Lin, P. C. Strain responsive concave and convex microlens arrays. Applied Physics Letters 91, 251912 (2007). doi: 10.1063/1.2827185
[28] Zhao, Y. H. et al. A convenient platform of tunable microlens arrays for the study of cellular responses to mechanical strains. Journal of Micromechanics and Microengineering 21, 054017 (2011). doi: 10.1088/0960-1317/21/5/054017
[29] Kim, J., Serpe, M. J. & Lyon, L. A. Photoswitchable microlens arrays. Angewandte Chemie International Edition 44, 1333-1336 (2005). doi: 10.1002/anie.200461538
[30] Berto, P. et al. Tunable and free-form planar optics. Nature Photonics 13, 649-656 (2019). doi: 10.1038/s41566-019-0486-3
[31] Liu, Y. J. et al. A frequency-addressed plasmonic switch based on dual-frequency liquid crystals. Applied Physics Letters 97, 091101 (2010). doi: 10.1063/1.3483156
[32] Liu, Y. J. & Sun, X. W. Electrically switchable computer-generated hologram recorded in polymer-dispersed liquid crystals. Applied Physics Letters 90, 191118 (2007). doi: 10.1063/1.2736270
[33] Liu, Y. J. et al. Generating electrically tunable optical vortices by a liquid crystal cell with patterned electrode. Applied Physics Letters 92, 101114 (2008). doi: 10.1063/1.2894521
[34] Wang, J. W. et al. Metasurface-enabled high-resolution liquid-crystal alignment for display and modulator applications. Laser & Photonics Review 16, 2100396 (2022).
[35] Wang, J. W. et al. Cholesteric liquid crystal-enabled electrically programmable metasurfaces for simultaneous near- and far-field displays. Nanoscale 14, 17921-17928 (2022). doi: 10.1039/D2NR05374H
[36] Li, K. et al. Electrically switchable structural colors based on liquid-crystal-overlaid aluminum anisotropic nanoaperture arrays. Optics Express 30, 31913-31924 (2022). doi: 10.1364/OE.461887
[37] Liu, Y. J. et al. Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays. Advanced Materials 24, OP131-OP135 (2012).
[38] Liu, Y. J. et al. Optically switchable gratings based on azo-dye-doped, polymer-dispersed liquid crystals. Optics Letters 34, 2351-2353 (2009). doi: 10.1364/OL.34.002351
[39] Liu, Y. J. et al. Surface acoustic wave driven light shutters using polymer-dispersed liquid crystals. Advanced Materials 23, 1656-1659 (2011). doi: 10.1002/adma.201003708
[40] Taniguchi, S. et al. Control of liquid crystal molecular orientation using ultrasound vibration. Applied Physics Letters 108, 101103 (2016). doi: 10.1063/1.4943494
[41] Chen, M. C. et al. Optical properties of a liquid-crystal microlens with an arrayed planar non-uniform spiral micro-coil electrode. Journal of the Optical Society of America B 36, 3174-3180 (2019). doi: 10.1364/JOSAB.36.003174
[42] Chu, F. et al. Polarisation-independent blue-phase liquid crystal microlens array with different dielectric layer. Liquid Crystals 46, 1273-1279 (2019). doi: 10.1080/02678292.2018.1550221
[43] Dai, H. T. et al. Optically isotropic, electrically tunable liquid crystal droplet arrays formed by photopolymerization-induced phase separation. Optics Letters 40, 2723-2726 (2015). doi: 10.1364/OL.40.002723
[44] Dai, H. T. et al. A negative-positive tunable liquid-crystal microlens array by printing. Optics Express 17, 4317-4323 (2009). doi: 10.1364/OE.17.004317
[45] Galstian, T. et al. Optical camera with liquid crystal autofocus lens. Optics Express 25, 29945-29964 (2017). doi: 10.1364/OE.25.029945
[46] Kim, J. et al. Liquid crystal-based square lens array with tunable focal length. Optics Express 22, 3316-3324 (2014). doi: 10.1364/OE.22.003316
[47] Li, Y., Liu, Y. J. & Luo, D. A photo-switchable and photo-tunable microlens based on chiral liquid crystals. Journal of Materials Chemistry C 7, 15166-15170 (2019). doi: 10.1039/C9TC04862F
[48] Ren, H. W., Fan, Y. H. & Wu, S. T. Liquid-crystal microlens arrays using patterned polymer networks. Optics Letters 29, 1608-1610 (2004). doi: 10.1364/OL.29.001608
[49] Shimizu, Y. et al. Ultrasound liquid crystal lens. Applied Physics Letters 112, 161104 (2018). doi: 10.1063/1.5027131
[50] Xiong, G. R. et al. Phototunable microlens array based on polymer dispersed liquid crystals. Advanced Functional Materials 19, 1082-1086 (2009). doi: 10.1002/adfm.200801335
[51] Jiang, M., et al. Low f-number diffraction-limited pancharatnam–berry microlenses enabled by plasmonic photopatterning of liquid crystal polymers. Advanced Materials 31, 1808028 (2019). doi: 10.1002/adma.201808028
[52] Li, K. et al. Controlling morphological and electro-optical properties via the phase separation in polymer/liquid-crystal composite materials. Liquid Crystals 47, 238-247 (2020). doi: 10.1080/02678292.2019.1641854
[53] Vorflusev, V. & Kumar, S. Phase-separated composite films for liquid crystal displays. Science 283, 1903-1905 (1999). doi: 10.1126/science.283.5409.1903
[54] Zhang, Q. S. et al. Fabrication of microlens arrays with high quality and high fill factor by inkjet printing. Advanced Optical Materials 10, 2200677 (2022). doi: 10.1002/adom.202200677
[55] Zolfaghari, A. et al. Replication of plastic microlens arrays using electroforming and precision compression molding. Microelectronic Engineering 239-240, 111529 (2021).
[56] Jung, H. & Jeong, K. H. Monolithic polymer microlens arrays with high numerical aperture and high packing density. ACS Applied Materials & Interfaces 7, 2160-2165 (2015).
[57] Yuan, C. et al. Ultrafast three-dimensional printing of optically smooth microlens arrays by oscillation-assisted digital light processing. ACS Applied Materials & Interfaces 11, 40662-40668 (2019).
[58] Wang, Q. B. et al. Control of polymer structures in phase-separated liquid crystal-polymer composite systems. Japanese Journal of Applied Physics 44, 3115-3120 (2005). doi: 10.1143/JJAP.44.3115
[59] Sørensen, B. E. A revised Michel-Lévy interference colour chart based on first-principles calculations. European Journal of Mineralogy 25, 5-10 (2013). doi: 10.1127/0935-1221/2013/0025-2252
[60] Kuo, C. H. et al. Influence of pretilt angle on disclination lines of liquid crystal lens. Applied Optics 51, 4269-4274 (2012). doi: 10.1364/AO.51.004269
[61] Ye, M., Wang, B., & Sato, S. Driving of liquid crystal lens without disclination occurring by applying in-plane electric field. Japanese Journal of Applied Physics 42, 5086-5089 (2003). doi: 10.1143/JJAP.42.5086
[62] Jakeman, E. & Raynes, E. P. Electro-optic response times in liquid crystals. Physics Letters A 39, 69-70 (1972). doi: 10.1016/0375-9601(72)90332-5