[1] |
Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018). doi: 10.1126/science.aar4005 |
[2] |
Bahari, B. et al. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science 358, 636–640 (2017). doi: 10.1126/science.aao4551 |
[3] |
Harari, G. et al. Topological insulator laser: theory. Science 359, eaar4003 (2018). |
[4] |
Kitaev, A. Y. Unpaired Majorana fermions in quantum wires. Phys.-Uspekhi 44, 131–136 (2001). doi: 10.1070/1063-7869/44/10S/S29 |
[5] |
Barik, S. et al. A topological quantum optics interface. Science 359, 666–668 (2018). doi: 10.1126/science.aaq0327 |
[6] |
Plotnik, Y. et al. Observation of unconventional edge states in 'photonic graphene'. Nat. Mater. 13, 57–62 (2014). doi: 10.1038/nmat3783 |
[7] |
Skirlo, S. A., Lu, L. & Soljačić, M. Multimode one-way waveguides of large Chern numbers. Phys. Rev. Lett. 113, 113904 (2014). doi: 10.1103/PhysRevLett.113.113904 |
[8] |
Skirlo, S. A. et al. Experimental observation of large Chern numbers in photonic crystals. Phys. Rev. Lett. 115, 253901 (2015). doi: 10.1103/PhysRevLett.115.253901 |
[9] |
Peano, V. et al. Topological phases of sound and light. Phys. Rev. X 5, 031011 (2015). http://meetings.aps.org/Meeting/MAR15/Session/A38.11 |
[10] |
Yang, Z. J. et al. Topological acoustics. Phys. Rev. Lett. 114, 114301 (2015). doi: 10.1103/PhysRevLett.114.114301 |
[11] |
Huber, S. D. Topological mechanics. Nat. Phys. 12, 621–623 (2016). doi: 10.1038/nphys3801 |
[12] |
Süsstrunk, R. & Huber, S. D. Classification of topological phonons in linear mechanical metamaterials. Proc. Natl Acad. Sci. USA 113, E4767–E4775 (2016). doi: 10.1073/pnas.1605462113 |
[13] |
Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Quantized electric multipole insulators. Science 357, 61–66 (2017). doi: 10.1126/science.aah6442 |
[14] |
Fang, C., Gilbert, M. J. & Bernevig, B. A. Bulk topological invariants in noninteracting point group symmetric insulators. Phys. Rev. B 86, 115112 (2012). doi: 10.1103/PhysRevB.86.115112 |
[15] |
Ezawa, M. Higher-order topological insulators and semimetals on the breathing Kagome and pyrochlore lattices. Phys. Rev. Lett. 120, 026801 (2018). doi: 10.1103/PhysRevLett.120.026801 |
[16] |
Khalaf, E. Higher-order topological insulators and superconductors protected by inversion symmetry. Phys. Rev. B 97, 205136 (2018). doi: 10.1103/PhysRevB.97.205136 |
[17] |
Langbehn, J. et al. Reflection-symmetric second-order topological insulators and superconductors. Phys. Rev. Lett. 119, 246401 (2017). doi: 10.1103/PhysRevLett.119.246401 |
[18] |
Ezawa, M. Minimal models for Wannier-type higher-order topological insulators and phosphorene. Phys. Rev. B 98, 045125 (2018). doi: 10.1103/PhysRevB.98.045125 |
[19] |
Peterson, C. W. et al. A quantized microwave quadrupole insulator with topologically protected corner states. Nature 555, 346–350 (2018). doi: 10.1038/nature25777 |
[20] |
Imhof, S. et al. Topolectrical-circuit realization of topological corner modes. Nat. Phys. 14, 925–929 (2018). doi: 10.1038/s41567-018-0246-1 |
[21] |
Chen, X. D. et al. Direct observation of corner states in second-order topological photonic crystal slabs. Phys. Rev. Lett. 122, 233902 (2019). doi: 10.1103/PhysRevLett.122.233902 |
[22] |
Zhang, Z. W. et al. Non-hermitian sonic second-order topological insulator. Phys. Rev. Lett. 122, 195501 (2019). doi: 10.1103/PhysRevLett.122.195501 |
[23] |
Xie, B. Y. et al. Visualization of higher-order topological insulating phases in two-dimensional dielectric photonic crystals. Phys. Rev. Lett. 122, 233903 (2019). doi: 10.1103/PhysRevLett.122.233903 |
[24] |
Mittal, S. et al. Photonic quadrupole topological phases. Nat. Photonics 13, 692–696 (2019). doi: 10.1038/s41566-019-0452-0 |
[25] |
El Hassan, A. et al. Corner states of light in photonic waveguides. Nat. Photonics 13, 697–700 (2019). doi: 10.1038/s41566-019-0519-y |
[26] |
Serra-Garcia, M. et al. Observation of a phononic quadrupole topological insulator. Nature 555, 342–345 (2018). doi: 10.1038/nature25156 |
[27] |
Xue, H. R. et al. Acoustic higher-order topological insulator on a Kagome lattice. Nat. Mater. 18, 108–112 (2019). doi: 10.1038/s41563-018-0251-x |
[28] |
Ni, X. et al. Observation of higher-order topological acoustic states protected by generalized chiral symmetry. Nat. Mater. 18, 113–120 (2019). doi: 10.1038/s41563-018-0252-9 |
[29] |
Weiner, M. et al. Demonstration of a third-order hierarchy of topological states in a three-dimensional acoustic metamaterial. Sci. Adv. 6, eaay4166 (2020). http://www.researchgate.net/publication/340239354_Demonstration_of_a_third-order_hierarchy_of_topological_states_in_a_three-dimensional_acoustic_metamaterial |
[30] |
Xia, B. Z. et al. Three-dimensional higher-order topological acoustic system with multidimensional topological states. Preprint at https://arxiv.org/abs/1912.08736 (2020). |
[31] |
Xue, H. R. et al. Realization of an acoustic third-order topological insulator. Phys. Rev. Lett. 122, 244301 (2019). doi: 10.1103/PhysRevLett.122.244301 |
[32] |
Zhao, E. Topological circuits of inductors and capacitors. Ann. Phys. 399, 289–313 (2018). doi: 10.1016/j.aop.2018.10.006 |
[33] |
Jia, N. Y. et al. Time- and site-resolved dynamics in a topological circuit. Phys. Rev. X 5, 021031 (2015). |
[34] |
Albert, V. V., Glazman, L. I. & Jiang, L. Topological properties of linear circuit lattices. Phys. Rev. Lett. 114, 173902 (2015). doi: 10.1103/PhysRevLett.114.173902 |
[35] |
Goren, T. et al. Topological Zak phase in strongly coupled LC circuits. Phys. Rev. B 97, 041106 (2018). doi: 10.1103/PhysRevB.97.041106 |
[36] |
Liu, S. et al. Topologically protected edge state in two-dimensional Su–Schrieffer–Heeger circuit. Research 2019, 8609875 (2019). http://www.ncbi.nlm.nih.gov/pubmed/31549092 |
[37] |
Luo, K. F., Yu, R. & Weng, H. M. Topological nodal states in circuit lattice. Research 2018, 6793752 (2018). |
[38] |
Lee, C. H. et al. Topolectrical circuits. Commun. Phys. 1, 39 (2018). doi: 10.1038/s42005-018-0035-2 |
[39] |
Lu, Y. H. et al. Probing the berry curvature and Fermi arcs of a Weyl circuit. Phys. Rev. B 99, 020302 (2019). doi: 10.1103/PhysRevB.99.020302 |
[40] |
Ezawa, M. Higher-order topological electric circuits and topological corner resonance on the breathing Kagome and pyrochlore lattices. Phys. Rev. B 98, 201402 (2018). doi: 10.1103/PhysRevB.98.201402 |
[41] |
Ezawa, M. Non-Hermitian higher-order topological states in nonreciprocal and reciprocal systems with their electric-circuit realization. Phys. Rev. B 99, 201411 (2019). doi: 10.1103/PhysRevB.99.201411 |
[42] |
Hofstadter, D. R. Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B 14, 2239–2249 (1976). doi: 10.1103/PhysRevB.14.2239 |
[43] |
Fan, H. Y. et al. Elastic higher-order topological insulator with topologically protected corner states. Phys. Rev. Lett. 122, 204301 (2019). doi: 10.1103/PhysRevLett.122.204301 |
[44] |
Hofmann, T. et al. Chiral voltage propagation and calibration in a topolectrical Chern circuit. Phys. Rev. Lett. 122, 247702 (2018). doi: 10.1103/PhysRevLett.122.247702 |
[45] |
Luo, K. F. et al. Nodal manifolds bounded by exceptional points on non-hermitian honeycomb lattices and electrical-circuit realizations. Preprint at https://arxiv.org/abs/1810.09231 (2018). |
[46] |
Hadad, Y. et al. Self-induced topological protection in nonlinear circuit arrays. Nat. Electron. 1, 178–182 (2018). doi: 10.1038/s41928-018-0042-z |
[47] |
Hadad, Y., Vitelli, V. & Alu, A. Solitons and propagating domain walls in topological resonator arrays. ACS Photonics 4, 1974–1979 (2017). doi: 10.1021/acsphotonics.7b00303 |
[48] |
Bao, J. C. et al. Topoelectrical circuit octupole insulator with topologically protected corner states. Phys. Rev. B 100, 201406 (2019). doi: 10.1103/PhysRevB.100.201406 |