[1] Tin, T. C., et al. A realizable overlay virtual metrology system in semiconductor manufacturing: Proposal, challenges and future perspective. IEEE Access 9, 65418-65439 (2021). doi: 10.1109/ACCESS.2021.3076193
[2] den Boef, A. J. Optical wafer metrology sensors for process-robust CD and overlay control in semiconductor device manufacturing. Surface Topography: Metrology and Properties 4, 023001 (2016). doi: 10.1088/2051-672X/4/2/023001
[3] Leray, P. et al. Diffraction based overlay metrology: accuracy and performance on front end stack. In Proceedings of SPIE 6922, Metrology, Inspection, and Process Control for Microlithography XXⅡ. San Jose, California, United States (SPIE, 2008).
[4] Yang, W. D. et al. Novel diffraction-based spectroscopic method for overlay metrology. In Proceedings of SPIE 5083, Metrology, Inspection, and Process Control for Microlithography XVⅡ, Santa Clara, California, United States, 200–207 (SPIE, 2003).
[5] Adel, M. et al. Diffraction order control in overlay metrology: a review of the roadmap options. In Proceedings of SPIE 6922, Metrology, Inspection, and Process Control for Microlithography XXⅡ, San Jose, California, United States, 23 – 41 (SPIE, 2008).
[6] Messinis, C., et al. Diffraction-based overlay metrology using angular-multiplexed acquisition of dark-field digital holograms. Optics Express 28, 37419-37435 (2020). doi: 10.1364/OE.413020
[7] Salerno, A. et al. Diffraction order control in overlay metrology: a review of the roadmap options. In Proceedings of SPIE 10585, Metrology, Inspection, and Process Control for Microlithography XXXⅡ, San Jose, California, United States (SPIE, 2008).
[8] Kim, S., et al. Boron-doped amorphous carbon deposited by DC sputtering for a hardmask: Microstructure and dry etching properties. Applied Surface Science 637, 157895 (2023). doi: 10.1016/j.apsusc.2023.157895
[9] Messinis, C., et al. Impact of coherence length on the field of view indark-field holographic microscopy for semiconductormetrology: theoretical and experimental comparisons. Applied Optics 59, 3498-3507 (2020). doi: 10.1364/AO.379236
[10] Messinis, C., et al. Aberration calibration and correction with nano-scatterers in digital holographic microscopy for semiconductor metrology. Optics Express 29, 38237-38256 (2021). doi: 10.1364/OE.438026
[11] Messinis, C., et al. Pupil apodization in digital holographicmicroscopy for reduction of coherent imagingeffects. Optics Continuum 1, 1202-1217 (2022). doi: 10.1364/OPTCON.460029
[12] van Schaijk, T. T., et al. Diffraction-based overlay metrology from visible to infrared wavelengths using a single sensor. Journal of Micro/Nanopatterning,Materials,and Metrology 21, 014001 (2022).
[13] van Gardingen-Cromwijk, T., et al. Field-position dependent apodization in dark-field digital holographic microscopy for semiconductor metrology. Optics Express 31, 411-425 (2023). doi: 10.1364/OE.476157
[14] Adhikary, M., et al. Illumination spot profile correction in digital holographic microscopy for overlay metrology. Journal of Micro/Nanopatterning,Materials,and Metrology 22, 024001 (2023).
[15] Schnars, U. & Jüptner, W. Direct recording of holograms by a ccd target and numerical reconstruction. Applied Optics 33, 179-181 (1994). doi: 10.1364/AO.33.000179
[16] Saavedra, G. et al. Recent advances in digital holographic microscopy. In Proceedings of the 20th International Conference on Transparent Optical Networks (ICTON), Bucharest, Romania: IEEE, 1–4 (2018).
[17] Picazo-Bueno, J., Garcıa, J. & Micó, V. Single-element reflective digital holographic microscopy. Frontiers in Physics 9, 639607 (2021). doi: 10.3389/fphy.2021.639607
[18] Kim, M. Principles and techniques of digital holographic microscopy. SPIE Reviews 1, 018005 (2010).
[19] Dubois, F. & Grosfils, P. Dark-field digital holographic microscopy to investigate objects that are nanosized or smaller than the optical resolution. Optics letters 33, 2605-2607 (2008). doi: 10.1364/OL.33.002605
[20] Verpillat, F., et al. Dark-field digital holographic microscopy for 3d-tracking of gold nanoparticles. Optics Express 19, 26044-26055 (2021).
[21] Trujillo, C. & Garcia-Sucerquia, J. Numerical dark field illumination applied to experimental digital lensless holographic microscopy for reconstructions with enhanced contrast. Optics letters 17, 4096-4099 (2018).
[22] Trusiak, M., et al. Darkfocus: numerical autofocusing in digital in-line holographic microscopy using variance of computational dark-field gradient. Optics and Lasers in Engineering 134, 106195 (2020). doi: 10.1016/j.optlaseng.2020.106195
[23] Larivière-Loiselle, C., Bélanger, E. & Marquet, P. Polychromatic digital holographic microscopy: a quasicoherent-noise-free imaging technique to explore the connectivity of living neuronal networks. Neurophotonics 7, 040501 (2020).
[24] Kühn, J., et al. Axial sub-nanometer accuracy in digital holographic microscopy. Measurement Science and Technology 19, 074007 (2008). doi: 10.1088/0957-0233/19/7/074007
[25] Fontbonne, A., Sauer, H. & Goudail, F. How to integrate digital post-processing algorithms in professional optical design software for co-designing complex optical systems? In Proceedings of SPIE 11871, Optical Design and Engineering VⅢ, 118710P (SPIE, 2021).
[26] Denis, L., et al. Fast approximations of shift-variant blur. International Journal of Computer Vision 115, 253-278 (2015). doi: 10.1007/s11263-015-0817-x
[27] Mathijssen, S. et al. Color mixing in overlay metrology for greater accuracy and robustness. In Proceedings of SPIE 10959, Metrology, Inspection, and Process Control for Microlithography XXXⅢ, San Jose, California, United States, 109591G (SPIE, 2019).
[28] Sasián, J. Introduction to Aberrations in Optical Imaging Systems, Ch. 5 (Cambridge University Press, 2012).
[29] Zwiers, R. J. M. & Dortant, G. C. M. Aspherical lenses produced by a fast high-precision replication process using uv-curable coatings. Applied Optics 24, 4483-4488 (1985). doi: 10.1364/AO.24.004483
[30] Verstegen, E. J. K., et al. Influence of the reaction mechanism on the shape accuracy of optical components obtained by photoreplication. Journal of Applied Polymer Science 90, 2364-2376 (2003). doi: 10.1002/app.12875
[31] Doblas, A., et al. Study of spatial lateral resolution in off-axis digital holographic microscopy. Optics Communications 352, 63-69 (2015). doi: 10.1016/j.optcom.2015.04.066
[32] Strehl, K. Aplanatische und fehlerhafte abbildung im fernrohr. Zeitschrift für Instrumentenkunde 15, 362-370 (1895).
[33] Alloin, D. M. & Mariotti, J. M. Adaptive optics for astronomy. Dordrecht: Kluwer Academic Publishers (1994).
[34] Ottevaere, H. & Thienpont, H. Optical microlenses. In Encyclopedia of Modern Optics (ed Guenther, R. D.) 21–43 (Elsevier, Amsterdam, 2005).
[35] Paolillo, S., et al. Direct metal etch of ruthenium for advanced interconnect. Journal of Vacuum Science & Technology B 36, (2018).
[36] Ye, C. H. & Lee, D.-H. CMOS image sensor: characterizing its PRNU (photo-response non-uniformity). In Proceedings of SPIE 10757, Optical Data Storage 2018: Industrial Optical Devices and Systems, San Diego, California, United States, 107570A (SPIE, 2018).