[1] |
Marpaung, D., Yao, J. P. & Capmany, J. Integrated microwave photonics. Nat. Photonics 13, 80–90 (2019). |
[2] |
Miller, D. A. B. Optical interconnects to silicon. IEEE J. Sel. Top. Quantum Electron. 6, 1312–1317 (2000). doi: 10.1109/2944.902184 |
[3] |
Sun, C. et al. Single-chip microprocessor that communicates directly using light. Nature 528, 534–538 (2015). doi: 10.1038/nature16454 |
[4] |
Atabaki, A. H. et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature 556, 349–354 (2018). doi: 10.1038/s41586-018-0028-z |
[5] |
Caulfield, H. J. & Dolev, S. Why future supercomputing requires optics. Nat. Photonics 4, 261–263 (2010). doi: 10.1038/nphoton.2010.94 |
[6] |
Zhong, H. S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020). doi: 10.1126/science.abe8770 |
[7] |
Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018). doi: 10.1038/s41586-018-0065-7 |
[8] |
Bogaerts, W. et al. Programmable photonic circuits. Nature 586, 207–216 (2020). doi: 10.1038/s41586-020-2764-0 |
[9] |
Rickman, A. The commercialization of silicon photonics. Nat. Photonics 8, 579–582 (2014). doi: 10.1038/nphoton.2014.175 |
[10] |
Wang, J. W. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018). doi: 10.1126/science.aar7053 |
[11] |
Elshaari, A. W. et al. Hybrid integrated quantum photonic circuits. Nat. Photonics 14, 285–298 (2020). doi: 10.1038/s41566-020-0609-x |
[12] |
Cheben, P. et al. Subwavelength integrated photonics. Nature 560, 565–572 (2018). doi: 10.1038/s41586-018-0421-7 |
[13] |
Sun, L. et al. Subwavelength structured silicon waveguides and photonic devices. Nanophotonics 9, 1321–1340 (2020). doi: 10.1515/nanoph-2020-0070 |
[14] |
Halir, R. et al. Subwavelength-grating metamaterial structures for silicon photonic devices. Proc. IEEE 106, 2144–2157 (2018). doi: 10.1109/JPROC.2018.2851614 |
[15] |
Molesky, S. et al. Inverse design in nanophotonics. Nat. Photonics 12, 659–670 (2018). doi: 10.1038/s41566-018-0246-9 |
[16] |
Zheludev, N. I. & Kivshar, Y. S. From metamaterials to metadevices. Nat. Mater. 11, 917–924 (2012). doi: 10.1038/nmat3431 |
[17] |
Soukoulis, C. M. & Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photonics 5, 523–530 (2011). doi: 10.1038/nphoton.2011.154 |
[18] |
Jahani, S. & Jacob, Z. All-dielectric metamaterials. Nat. Nanotechnol. 11, 23–36 (2016). doi: 10.1038/nnano.2015.304 |
[19] |
Chen, H. Y., Chan, C. T. & Sheng, P. Transformation optics and metamaterials. Nat. Mater. 9, 387–396 (2010). doi: 10.1038/nmat2743 |
[20] |
Soukoulis, C. M. & Wegener, M. Optical metamaterials-more bulky and less lossy. Science 330, 1633–1634 (2010). doi: 10.1126/science.1198858 |
[21] |
Yu, N. F. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713 |
[22] |
Yu, N. F. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014). doi: 10.1038/nmat3839 |
[23] |
Sun, S. L. et al. Electromagnetic metasurfaces: physics and applications. Adv. Opt. Photonics 11, 380–479 (2019). doi: 10.1364/AOP.11.000380 |
[24] |
Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016). doi: 10.1126/science.aaf6644 |
[25] |
Li, L. et al. Metalens-array-based high-dimensional and multiphoton quantum source. Science 368, 1487–1490 (2020). doi: 10.1126/science.aba9779 |
[26] |
Chen, W. T., Zhu, A. Y. & Capasso, F. Flat optics with dispersion-engineered metasurfaces. Nat. Rev. Mater. 5, 604–620 (2020). doi: 10.1038/s41578-020-0203-3 |
[27] |
Huang, L. L., Zhang, S. & Zentgraf, T. Metasurface holography: from fundamentals to applications. Nanophotonics 7, 1169–1190 (2018). doi: 10.1515/nanoph-2017-0118 |
[28] |
Overvig, A. C. et al. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase. Light.: Sci. Appl. 8, 92 (2019). doi: 10.1038/s41377-019-0201-7 |
[29] |
Qian, C. et al. Deep-learning-enabled self-adaptive microwave cloak without human intervention. Nat. Photonics 14, 383–390 (2020). doi: 10.1038/s41566-020-0604-2 |
[30] |
Hu, Y. Q. et al. 3D-integrated metasurfaces for full-colour holography. Light.: Sci. Appl. 8, 86 (2019). doi: 10.1038/s41377-019-0198-y |
[31] |
Joo, W. J. et al. Metasurface-driven OLED displays beyond 10, 000 pixels per inch. Science 370, 459–463 (2020). doi: 10.1126/science.abc8530 |
[32] |
Park, J. et al. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications. Nat. Nanotechnol. 16, 69–76 (2021). doi: 10.1038/s41565-020-00787-y |
[33] |
Li, G. X., Zhang, S. & Zentgraf, T. Nonlinear photonic metasurfaces. Nat. Rev. Mater. 2, 17010 (2017). doi: 10.1038/natrevmats.2017.10 |
[34] |
Sain, B., Meier, C. & Zentgraf, T. Nonlinear optics in all-dielectric nanoantennas and metasurfaces: a review. Adv. Photonics 1, 024002 (2019). http://oepn.opticsjournal.net/ViewFull0.htm?aid=OJ190404000134IfLhOk |
[35] |
Guo, X. X. et al. Molding free-space light with guided wave-driven metasurfaces. Sci. Adv. 6, eabb4142 (2020). doi: 10.1126/sciadv.abb4142 |
[36] |
Zhu, L., Yang, W. J. & Chang-Hasnain, C. Very high efficiency optical coupler for silicon nanophotonic waveguide and single mode optical fiber. Opt. Express 25, 18462–18473 (2017). doi: 10.1364/OE.25.018462 |
[37] |
Arango, F. B., Kwadrin, A. & Koenderink, A. F. Plasmonic antennas hybridized with dielectric waveguides. ACS Nano 6, 10156–10167 (2012). doi: 10.1021/nn303907r |
[38] |
Benedikovic, D. et al. High-efficiency single etch step apodized surface grating coupler using subwavelength structure. Laser Photonics Rev. 8, L93–L97 (2014). http://www.onacademic.com/detail/journal_1000039483714910_6052.html |
[39] |
Benedikovic, D. et al. Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides. Opt. Express 23, 22628–22635 (2015). doi: 10.1364/OE.23.022628 |
[40] |
Meng, Y. et al. Ultracompact graphene-assisted tunable waveguide couplers with high directivity and mode selectivity. Sci. Rep. 8, 13362 (2018). doi: 10.1038/s41598-018-31555-7 |
[41] |
Guo, Y. H. et al. Chip-integrated geometric metasurface as a novel platform for directional coupling and polarization sorting by spin-orbit interaction. IEEE J. Sel. Top. Quantum Electron. 24, 4700107 (2018). http://ieeexplore.ieee.org/iel7/2944/4481213/08318653.pdf |
[42] |
Zhang, Y. B. et al. Spin-selective and wavelength-selective demultiplexing based on waveguide-integrated all-dielectric metasurfaces. Adv. Optical Mater. 7, 1801273 (2019). doi: 10.1002/adom.201801273 |
[43] |
Meng, Y. et al. Chip-integrated metasurface for versatile and multi-wavelength control of light couplings with independent phase and arbitrary polarization. Opt. Express 27, 16425–16439 (2019). doi: 10.1364/OE.27.016425 |
[44] |
Meng, Y. et al. Versatile on-chip light coupling and (de)multiplexing from arbitrary polarizations to controlled waveguide modes using an integrated dielectric metasurface. Photonics Res. 8, 564–576 (2020). doi: 10.1364/PRJ.384449 |
[45] |
Zhou, N. et al. Ultra-compact broadband polarization diversity orbital angular momentum generator with 3.6 × 3.6 µm2 footprint. Sci. Adv. 5, eaau9593 (2019). doi: 10.1126/sciadv.aau9593 |
[46] |
Cai, X. L. et al. Integrated compact optical vortex beam emitters. Science 338, 363–366 (2012). doi: 10.1126/science.1226528 |
[47] |
Xie, Z. W. et al. Ultra-broadband on-chip twisted light emitter for optical communications. Light.: Sci. Appl. 7, 18001 (2018). doi: 10.1038/lsa.2018.1 |
[48] |
Guo, R. et al. Bidirectional waveguide coupling with plasmonic Fano nanoantennas. Appl. Phys. Lett. 105, 053114 (2014). doi: 10.1063/1.4892651 |
[49] |
Guo, R. et al. Plasmonic fano nanoantennas for on-chip separation of wavelength-encoded optical signals. Nano Lett. 15, 3324–3328 (2015). doi: 10.1021/acs.nanolett.5b00560 |
[50] |
Guo, R. et al. High-bit rate ultra-compact light routing with mode-selective on-chip nanoantennas. Sci. Adv. 3, e1700007 (2017). doi: 10.1126/sciadv.1700007 |
[51] |
Li, Z. Y. et al. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces. Nat. Nanotechnol. 12, 675–683 (2017). doi: 10.1038/nnano.2017.50 |
[52] |
Wang, C. et al. Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides. Nat. Commun. 8, 2098 (2017). doi: 10.1038/s41467-017-02189-6 |
[53] |
Wang, Z. et al. On-chip wavefront shaping with dielectric metasurface. Nat. Commun. 10, 3547 (2019). doi: 10.1038/s41467-019-11578-y |
[54] |
Jahani, S. et al. Controlling evanescent waves using silicon photonic all-dielectric metamaterials for dense integration. Nat. Commun. 9, 1893 (2018). doi: 10.1038/s41467-018-04276-8 |
[55] |
Mia, M. B. et al. Exceptional coupling in photonic anisotropic metamaterials for extremely low waveguide crosstalk. Optica 7, 881–887 (2020). doi: 10.1364/OPTICA.394987 |
[56] |
González-Andrade, D. et al. Ultra-broadband nanophotonic phase shifter based on subwavelength metamaterial waveguides. Photonics Res. 8, 359–367 (2020). doi: 10.1364/PRJ.373223 |
[57] |
Estakhri, N. M., Edwards, B. & Engheta, N. Inverse-designed metastructures that solve equations. Science 363, 1333–1338 (2019). doi: 10.1126/science.aaw2498 |
[58] |
Lu, J. & Vuckovic, J. Nanophotonic computational design. Opt. Express 21, 13351–13367 (2013). doi: 10.1364/OE.21.013351 |
[59] |
Khoram, E. et al. Nanophotonic media for artificial neural inference. Photonics Res. 7, 823–827 (2019). doi: 10.1364/PRJ.7.000823 |
[60] |
Hughes, T. W. et al. Wave physics as an analog recurrent neural network. Sci. Adv. 3, eaay6946 (2019). http://arxiv.org/abs/1904.12831 |
[61] |
Tang, Y. H. et al. Generative deep learning model for inverse design of integrated nanophotonic devices. Laser Photonics Rev. 14, 2000287 (2020). doi: 10.1002/lpor.202000287 |
[62] |
Wang, K. Y. et al. Inverse design of digital nanophotonic devices using the adjoint method. Photonics Res. 8, 528–533 (2020). doi: 10.1364/PRJ.383887 |
[63] |
Majumder, A. et al. Ultra-compact polarization rotation in integrated silicon photonics using digital metamaterials. Opt. Express 25, 19721–19731 (2017). doi: 10.1364/OE.25.019721 |
[64] |
Shen, B., Polson, R. & Menon, R. Increasing the density of passive photonic integrated circuits via nanophotonic cloaking. Nat. Commun. 7, 13126 (2016). doi: 10.1038/ncomms13126 |
[65] |
Shen, B., Polson, R. & Menon, R. Metamaterial-waveguide bends with effective bend radius < λ0/2. Opt. Lett. 40, 5750–5753 (2015). doi: 10.1364/OL.40.005750 |
[66] |
Shen, B., Polson, R. & Menon, R. Integrated digital metamaterials enables ultra-compact optical diodes. Opt. Express 23, 10847–10855 (2015). doi: 10.1364/OE.23.010847 |
[67] |
Shen, B. et al. Integrated metamaterials for efficient and compact free-space-to-waveguide coupling. Opt. Express 22, 27175–27182 (2014). doi: 10.1364/OE.22.027175 |
[68] |
Shen, B. et al. An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 µm2 footprint. Nat. Photonics 9, 378–382 (2015). doi: 10.1038/nphoton.2015.80 |
[69] |
Liu, Y. J. et al. Arbitrarily routed mode-division multiplexed photonic circuits for dense integration. Nat. Commun. 10, 3263 (2019). doi: 10.1038/s41467-019-11196-8 |
[70] |
Sun, S. L. et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater. 11, 426–431 (2012). doi: 10.1038/nmat3292 |
[71] |
Dong, S. H. et al. On-chip trans-dimensional plasmonic router. Nanophotonics 9, 3357–3365 (2020). doi: 10.1515/nanoph-2020-0078 |
[72] |
Gan, F. Y., Li, H. Y. & Chen, J. J. Tailoring the emission polarization with metasurface-based emitters designed on a plasmonic ridge waveguide. Nanoscale 11, 7140–7148 (2019). doi: 10.1039/C8NR08960D |
[73] |
Dong, S. H. et al. Highly efficient wave-front reshaping of surface waves with dielectric metawalls. Phys. Rev. Appl. 9, 014032 (2018). doi: 10.1103/PhysRevApplied.9.014032 |
[74] |
Pahlevaninezhad, H. et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nat. Photonics 12, 540–547 (2018). doi: 10.1038/s41566-018-0224-2 |
[75] |
Principe, M. et al. Optical fiber meta-tips. Light. Sci. Appl. 6, e16226 (2017). doi: 10.1038/lsa.2016.226 |
[76] |
Consales, M. et al. Metasurface-enhanced lab-on-fiber biosensors. Laser Photonics Rev. 14, 2000180 (2020). doi: 10.1002/lpor.202000180 |
[77] |
Liu, A. P. et al. On-chip generation and control of the vortex beam. Appl. Phys. Lett. 108, 181103 (2016). doi: 10.1063/1.4948519 |
[78] |
Zhou, N. et al. Generating and synthesizing ultrabroadband twisted light using a compact silicon chip. Opt. Lett. 43, 3140–3143 (2018). doi: 10.1364/OL.43.003140 |
[79] |
Ha, Y. L. et al. Minimized two- and four-step varifocal lens based on silicon photonic integrated nanoapertures. Opt. Express 28, 7943–7952 (2020). doi: 10.1364/OE.386418 |
[80] |
Huang, Z. Q., Marks, D. L. & Smith, D. R. Out-of-plane computer-generated multicolor waveguide holography. Optica 6, 119–124 (2019). doi: 10.1364/OPTICA.6.000119 |
[81] |
Ding, Y. M. et al. Guided-wave-driven photonic integrated metasurface holograms. In Proceedings of 2020 Conference on Lasers and Electro-Optics (IEEE, 2020). |
[82] |
Wang, R. D. et al. Broadband on-chip terahertz asymmetric waveguiding via phase-gradient metasurface. ACS Photonics 6, 1774–1779 (2019). doi: 10.1021/acsphotonics.9b00524 |
[83] |
Ohana, D. & Levy, U. Mode conversion based on dielectric metamaterial in silicon. Opt. Express 22, 27617–27631 (2014). doi: 10.1364/OE.22.027617 |
[84] |
Ohana, D. et al. Dielectric metasurface as a platform for spatial mode conversion in nanoscale waveguides. Nano Lett. 16, 7956–7961 (2016). doi: 10.1021/acs.nanolett.6b04264 |
[85] |
Xu, H. N. & Shi, Y. C. Subwavelength-grating-assisted silicon polarization rotator covering all optical communication bands. Opt. Express 27, 5588–5597 (2019). doi: 10.1364/OE.27.005588 |
[86] |
Zhao, Y. et al. Ultra-compact silicon mode-order converters based on dielectric slots. Opt. Lett. 45, 3797–3800 (2020). doi: 10.1364/OL.391748 |
[87] |
Yao, C. N. et al. Dielectric nanoaperture metasurfaces in silicon waveguides for efficient and broadband mode conversion with an ultrasmall footprint. Adv. Optical Mater. 8, 2000529 (2020). doi: 10.1002/adom.202000529 |
[88] |
Wang, H. W. et al. Compact silicon waveguide mode converter employing dielectric metasurface structure. Adv. Optical Mater. 7, 1801191 (2019). http://otip.sjtu.edu.cn/publication/Journal/2018-AOM-HongweiWang-Compact%20silicon%20waveguide%20mode%20converter.pdf |
[89] |
Yao, C. H. et al. On-chip multi-mode manipulation via 2D refractive-index perturbation on a waveguide. Adv. Optical Mater. 8, 2000996 (2020). doi: 10.1002/adom.202000996 |
[90] |
Flueckiger, J. et al. Sub-wavelength grating for enhanced ring resonator biosensor. Opt. Express 24, 15672–15686 (2016). doi: 10.1364/OE.24.015672 |
[91] |
Wang, Z. et al. High quality factor subwavelength grating waveguide micro-ring resonator based on trapezoidal silicon pillars. Opt. Lett. 41, 3375–3378 (2016). doi: 10.1364/OL.41.003375 |
[92] |
He, L., Li, H. & Li, M. Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices. Sci. Adv. 2, e1600485 (2016). doi: 10.1126/sciadv.1600485 |
[93] |
Ding, Y. M. et al. On-chip integrated spectrometers based on metasurfaces on waveguides. Proceedings of 2020 Conference on Lasers and Electro-Optics (IEEE, 2020). |
[94] |
Sidiropoulos, T. P. H. et al. Compact optical antenna coupler for silicon photonics characterized by third-harmonic generation. ACS Photonics 1, 912–916 (2014). doi: 10.1021/ph5002796 |
[95] |
Lin, Z. et al. Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization. Optica 3, 233–238 (2016). doi: 10.1364/OPTICA.3.000233 |
[96] |
Xomalis, A. et al. Fibre-optic metadevice for all-optical signal modulation based on coherent absorption. Nat. Commun. 9, 182 (2018). doi: 10.1038/s41467-017-02434-y |
[97] |
Xomalis, A. et al. Picosecond all-optical switching and dark pulse generation in a fibre-optic network using a plasmonic metamaterial absorber. Appl. Phys. Lett. 113, 051103 (2018). doi: 10.1063/1.5040829 |
[98] |
Xomalis, A. et al. Cryptography in coherent optical information networks using dissipative metamaterial gates. APL Photonics 4, 046102 (2019). doi: 10.1063/1.5092216 |
[99] |
Xiong, Y. & Xu, F. Multifunctional integration on optical fiber tips: challenges and opportunities. Adv. Photonics 2, 064001 (2020). http://qikan.cqvip.com/Qikan/Article/Detail?id=7103841703 |
[100] |
Yang, J. Y. et al. Photonic crystal fiber metalens. Nanophotonics 8, 443–449 (2019). doi: 10.1515/nanoph-2018-0204 |
[101] |
Wang, N. et al. Boosting light collection efficiency of optical fibers using metallic nanostructures. ACS Photonics 6, 691–698 (2019). doi: 10.1021/acsphotonics.8b01560 |
[102] |
Kim, M. & Kim, S. High efficiency dielectric photonic crystal fiber metalens. Sci. Rep. 10, 20898 (2020). doi: 10.1038/s41598-020-77821-5 |
[103] |
Flannery, J. et al. Fabry-pérot cavity formed with dielectric metasurfaces in a hollow-core fiber. ACS Photonics 5, 337–341 (2018). doi: 10.1021/acsphotonics.7b01154 |
[104] |
Wang, Q. & Wang, L. Lab-on-fiber: plasmonic nano-arrays for sensing. Nanoscale 12, 7485–7499 (2020). doi: 10.1039/D0NR00040J |
[105] |
Ricciardi, A. et al. Lab-on-fiber technology: a new vision for chemical and biological sensing. Analyst 140, 8068–8079 (2015). doi: 10.1039/C5AN01241D |
[106] |
Ricciardi, A. et al. Versatile optical fiber nanoprobes: from plasmonic biosensors to polarization-sensitive devices. ACS Photonics 1, 69–78 (2014). doi: 10.1021/ph400075r |
[107] |
Savinov, V. & Zheludev, N. I. High-quality metamaterial dispersive grating on the facet of an optical fiber. Appl. Phys. Lett. 111, 091106 (2017). doi: 10.1063/1.4990766 |
[108] |
Chen, J. -h, Xiong, Y. -f, Xu, F. & Lu, Y. -q Silica optical fiber integrated with two-dimensional materials: towards opto-electro-mechanical technology. Light. Sci. Appl 10, 78 (2021). doi: 10.1038/s41377-021-00520-x |
[109] |
Ehtaiba, J. M. & Gordon, R. Beaming light through a bow-tie nanoaperture at the tip of a single-mode optical fiber. Opt. Express 27, 14112–14120 (2019). doi: 10.1364/OE.27.014112 |
[110] |
Jia, P. P. et al. Quasiperiodic nanohole arrays on optical fibers as plasmonic sensors: fabrication and sensitivity determination. ACS Sens. 1, 1078–1083 (2016). doi: 10.1021/acssensors.6b00436 |
[111] |
Giovampaola, C. D. & Engheta, N. Digital metamaterials. Nat. Mater. 13, 1115–1121 (2014). doi: 10.1038/nmat4082 |
[112] |
Lin, J. et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 340, 331–334 (2013). doi: 10.1126/science.1233746 |
[113] |
Huang, L. L. et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity. Light. Sci. Appl. 2, e70 (2013). doi: 10.1038/lsa.2013.26 |
[114] |
Mühlenbernd, H. et al. Amplitude- and phase-controlled surface plasmon polariton excitation with metasurfaces. ACS Photonics 3, 124–129 (2016). doi: 10.1021/acsphotonics.5b00536 |
[115] |
Pors, A. et al. Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons. Light. Sci. Appl. 3, e197 (2014). doi: 10.1038/lsa.2014.78 |
[116] |
Sun, W. J. et al. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations. Light. Sci. Appl. 5, e16003 (2016). doi: 10.1038/lsa.2016.3 |
[117] |
Ding, F., Deshpande, R. & Bozhevolnyi, S. I. Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence. Light. Sci. Appl. 7, 17178 (2018). doi: 10.1038/lsa.2017.178 |
[118] |
Meng, C. et al. Optical gap-surface plasmon metasurfaces for spin-controlled surface plasmon excitation and anomalous beam steering. ACS Photonics 7, 1849–1856 (2020). doi: 10.1021/acsphotonics.0c00681 |
[119] |
Wang, Z. et al. Excite spoof surface plasmons with tailored wavefronts using high-efficiency terahertz metasurfaces. Adv. Sci. 7, 2000982 (2020). doi: 10.1002/advs.202000982 |
[120] |
Li, S. Q. et al. Helicity-delinked manipulations on surface waves and propagating waves by metasurfaces. Nanophotonics 9, 3473–3481 (2020). doi: 10.1515/nanoph-2020-0200 |
[121] |
Xiao, S. Y. et al. Flexible coherent control of plasmonic spin-hall effect. Nat. Commun. 6, 8360 (2015). doi: 10.1038/ncomms9360 |
[122] |
Lee, S. Y. et al. Plasmonic meta-slit: shaping and controlling near-field focus. Optica 2, 6–13 (2015). doi: 10.1364/OPTICA.2.000006 |
[123] |
Liu, Y. M. & Zhang, X. Metasurfaces for manipulating surface plasmons. Appl. Phys. Lett. 103, 141101 (2013). doi: 10.1063/1.4821444 |
[124] |
High, A. A. et al. Visible-frequency hyperbolic metasurface. Nature 522, 192–196 (2015). doi: 10.1038/nature14477 |
[125] |
Ma, H. F. et al. Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons. Laser Photonics Rev. 8, 146–151 (2014). doi: 10.1002/lpor.201300118 |
[126] |
Wang, D. P. et al. Planar spoof surface plasmon polariton antenna by using transmissive phase gradient metasurface. Ann. Der Phys. 532, 2000008 (2020). doi: 10.1002/andp.202000008 |
[127] |
Xu, J. J. et al. Efficient conversion of surface-plasmon-like modes to spatial radiated modes. Appl. Phys. Lett. 106, 021102 (2015). doi: 10.1063/1.4905580 |
[128] |
Fan, Y. et al. Frequency scanning radiation by decoupling spoof surface plasmon polaritons via phase gradient metasurface. IEEE Trans. Antennas Propag. 66, 203–208 (2018). doi: 10.1109/TAP.2017.2767625 |
[129] |
Rahm, M. et al. Transformation-optical design of adaptive beam bends and beam expanders. Opt. Express 16, 11555–11567 (2008). doi: 10.1364/OE.16.011555 |
[130] |
Fu, Y. Y., Xu, Y. D. & Chen, H. Y. Applications of gradient index metamaterials in waveguides. Sci. Rep. 5, 18223 (2015). doi: 10.1038/srep18223 |
[131] |
Tsakmakidis, K. L., Boardman, A. D. & Hess, O. 'Trapped rainbow' storage of light in metamaterials. Nature 450, 397–401 (2007). doi: 10.1038/nature06285 |
[132] |
Reza, A., Dignam, M. M. & Hughes, S. Can light be stopped in realistic metamaterials? Nature 455, E10–E11 (2008). doi: 10.1038/nature07359 |
[133] |
Gan, Q. Q. et al. Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings. Proc. Natl Acad. Sci. USA 108, 5169–5173 (2011). doi: 10.1073/pnas.1014963108 |
[134] |
Luo, J. et al. Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials. Appl. Phys. Lett. 100, 221903 (2012). doi: 10.1063/1.4723844 |
[135] |
Gabrielli, L. H. et al. On-chip transformation optics for multimode waveguide bends. Nat. Commun. 3, 1217 (2012). doi: 10.1038/ncomms2232 |
[136] |
Ni, X. J. et al. Broadband light bending with plasmonic nanoantennas. Science 335, 427 (2012). doi: 10.1126/science.1214686 |
[137] |
Shneidman, A. V. et al. All-polymer integrated optical resonators by roll-to-roll nanoimprint lithography. ACS Photonics 5, 1839–1845 (2018). doi: 10.1021/acsphotonics.8b00022 |
[138] |
Sreenivasan, S. V. Nanoimprint lithography steppers for volume fabrication of leading-edge semiconductor integrated circuits. Microsyst. Nanoengineering 3, 17075 (2017). doi: 10.1038/micronano.2017.75 |
[139] |
Miller, D. A. B. Device requirements for optical interconnects to silicon chips. Proc. IEEE 97, 1166–1185 (2009). doi: 10.1109/JPROC.2009.2014298 |
[140] |
Joannopoulos, J. D., Villeneuve, P. R. & Fan, S. H. Photonic crystals: putting a new twist on light. Nature 386, 143–149 (1997). doi: 10.1038/386143a0 |
[141] |
van der Ziel, J. P. Phase-matched harmonic generation in a laminar structure with wave propagation in the plane of the layers. Appl. Phys. Lett. 26, 60–61 (1975). doi: 10.1063/1.88055 |
[142] |
Cheben, P. et al. Subwavelength waveguide grating for mode conversion and light coupling in integrated optics. Opt. Express 14, 4695–4702 (2006). doi: 10.1364/OE.14.004695 |
[143] |
Soller, B. J. & Hall, D. G. Energy transfer at optical frequencies to silicon-based waveguiding structures. J. Optical Soc. Am. A 18, 2577–2584 (2001). doi: 10.1364/JOSAA.18.002577 |
[144] |
Quidant, R. et al. Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains. Phys. Rev. B 69, 085407 (2004). doi: 10.1103/PhysRevB.69.085407 |
[145] |
Overvig, A. C., Malek, S. C. & Yu, N. F. Multifunctional nonlocal metasurfaces. Phys. Rev. Lett. 125, 017402 (2020). doi: 10.1103/PhysRevLett.125.017402 |
[146] |
Overvig, A. C. et al. Selection rules for quasibound states in the continuum. Phys. Rev. B 102, 035434 (2020). doi: 10.1103/PhysRevB.102.035434 |
[147] |
Jensen, J. S. & Sigmund, O. Topology optimization for nano-photonics. Laser Photonics Rev. 5, 308–321 (2011). doi: 10.1002/lpor.201000014 |
[148] |
Ma, W. et al. Deep learning for the design of photonic structures. Nat. Photonics 15, 77–90 (2021). doi: 10.1038/s41566-020-0685-y |
[149] |
Miller, D. A. B. All linear optical devices are mode converters. Opt. Express 20, 23985–23993 (2012). doi: 10.1364/OE.20.023985 |
[150] |
Meinzer, N., Barnes, W. L. & Hooper, I. R. Plasmonic meta-atoms and metasurfaces. Nat. Photonics 8, 889–898 (2014). doi: 10.1038/nphoton.2014.247 |
[151] |
Arbabi, A. et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937–943 (2015). doi: 10.1038/nnano.2015.186 |
[152] |
Mueller, J. P. B. et al. Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett. 118, 113901 (2017). doi: 10.1103/PhysRevLett.118.113901 |
[153] |
Su, L. et al. Nanophotonic inverse design with SPINS: software architecture and practical considerations. Appl. Phys. Rev. 7, 011407 (2020). doi: 10.1063/1.5131263 |
[154] |
Chi, J. et al. High-performance mid-infrared frequency upconversion in lithium niobate waveguide patterned with metasurfaces. J. Phys. D Appl. Phys. 52, 035101 (2019). doi: 10.1088/1361-6463/aaebe7 |
[155] |
Fang, B. et al. Second-harmonic generation and manipulation in lithium niobate slab waveguides by grating metasurfaces. Photonics Res. 8, 1296–1300 (2020). doi: 10.1364/PRJ.391850 |
[156] |
Novotny, L. & van Hulst, N. Antennas for light. Nat. Photonics 5, 83–90 (2011). |
[157] |
Purcell, E. M. & Morin, D. J. Electricity and Magnetism 3rd edn. (Cambridge University Press, 2013). |
[158] |
Vercruysse, D. et al. Single asymmetric plasmonic antenna as a directional coupler to a dielectric waveguide. ACS Photonics 4, 1398–1402 (2017). doi: 10.1021/acsphotonics.7b00038 |
[159] |
Kosako, T., Kadoya, Y. & Hofmann, H. F. Directional control of light by a nano-optical Yagi-Uda antenna. Nat. Photonics 4, 312–315 (2010). doi: 10.1038/nphoton.2010.34 |
[160] |
Kullock, R. et al. Electrically-driven Yagi-Uda antennas for light. Nat. Commun. 11, 115 (2020). doi: 10.1038/s41467-019-14011-6 |
[161] |
Badawy, T. & Bertuch, T. Slotted waveguide antenna integrated with printed Yagi-Uda director array. Proceedings of the 13th European Conference on Antennas and Propagation 1–5 (IEEE, 2019). |
[162] |
Ma, L. et al. Yagi-Uda optical antenna array collimated laser based on surface plasmons. Opt. Commun. 368, 197–201 (2016). doi: 10.1016/j.optcom.2016.01.090 |
[163] |
Kim, J. et al. Directional radiation of babinet-inverted optical nanoantenna integrated with plasmonic waveguide. Sci. Rep. 5, 11832 (2015). doi: 10.1038/srep11832 |
[164] |
Février, M. et al. Giant coupling effect between metal nanoparticle chain and optical waveguide. Nano Lett. 12, 1032–1037 (2012). doi: 10.1021/nl204265f |
[165] |
Chen, B. G. et al. Hybrid photon-plasmon coupling and ultrafast control of nanoantennas on a silicon photonic chip. Nano Lett. 18, 610–617 (2018). doi: 10.1021/acs.nanolett.7b04861 |
[166] |
Magno, G. et al. Strong coupling and vortexes assisted slow light in plasmonic chain-SOI waveguide systems. Sci. Rep. 7, 7228 (2017). doi: 10.1038/s41598-017-07700-z |
[167] |
Bruck, R. & Muskens, O. L. Plasmonic nanoantennas as integrated coherent perfect absorbers on SOI waveguides for modulators and all-optical switches. Opt. Express 21, 27652–27661 (2013). doi: 10.1364/OE.21.027652 |
[168] |
Chen, C. et al. Waveguide-integrated compact plasmonic resonators for on-chip mid-infrared laser spectroscopy. Nano Lett. 18, 7601–7608 (2018). doi: 10.1021/acs.nanolett.8b03156 |
[169] |
Chen, C., Oh, S. H. & Li, M. Coupled-mode theory for plasmonic resonators integrated with silicon waveguides towards mid-infrared spectroscopic sensing. Opt. Express 28, 2020–2036 (2020). doi: 10.1364/OE.28.002020 |
[170] |
Peyskens, F. et al. Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform. ACS Photonics 3, 102–108 (2016). doi: 10.1021/acsphotonics.5b00487 |
[171] |
Beck, F. J. & Resonant, S. P. P. modes supported by discrete metal nanoparticles on high-index substrates. Opt. Express 19, A146–A156 (2011). doi: 10.1364/OE.19.00A146 |
[172] |
Lupu, A. et al. Metal-dielectric metamaterials for guided wave silicon photonics. Opt. Express 19, 24746–24761 (2011). doi: 10.1364/OE.19.024746 |
[173] |
Smith, D. R. et al. Analysis of a waveguide-fed metasurface antenna. Phys. Rev. Appl. 8, 054048 (2017). doi: 10.1103/PhysRevApplied.8.054048 |
[174] |
Poulton, C. V. et al. Coherent solid-state LIDAR with silicon photonic optical phased arrays. Opt. Lett. 42, 4091–4094 (2017). doi: 10.1364/OL.42.004091 |
[175] |
Strain, M. J. et al. Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters. Nat. Commun. 5, 4856 (2014). doi: 10.1038/ncomms5856 |
[176] |
Shao, Z. K. et al. On-chip switchable radially and azimuthally polarized vortex beam generation. Opt. Lett. 43, 1263–1266 (2018). doi: 10.1364/OL.43.001263 |
[177] |
Wu, C. M. et al. Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network. Nat. Commun. 12, 96 (2021). doi: 10.1038/s41467-020-20365-z |
[178] |
Cheng, Z. et al. Sub-wavelength grating assisted mode order converter on the SOI substrate. Opt. Express 27, 34434–34441 (2019). doi: 10.1364/OE.27.034434 |
[179] |
Huang, C. C. & Huang, C. C. Theoretical analysis of mode conversion by refractive-index perturbation based on a single tilted slot on a silicon waveguide. Opt. Express 28, 18986–18999 (2020). doi: 10.1364/OE.394809 |
[180] |
Carletti, L. et al. Second harmonic generation in monolithic lithium niobate metasurfaces. Opt. Express 27, 33391–33398 (2019). doi: 10.1364/OE.27.033391 |
[181] |
Ma, J. J. et al. Nonlinear lithium niobate metasurfaces for second harmonic generation. Laser Photonics Rev. 15, 2000521 (2021). doi: 10.1002/lpor.202000521 |
[182] |
Sideris, S. & Ellenbogen, T. Terahertz generation in parallel plate waveguides activated by nonlinear metasurfaces. Opt. Lett. 44, 3590–3593 (2019). doi: 10.1364/OL.44.003590 |
[183] |
Kim, S. et al. High-harmonic generation by resonant plasmon field enhancement. Nature 453, 757–760 (2008). doi: 10.1038/nature07012 |
[184] |
Escuti, M. J., Kim, J. & Kudenov, M. W. Controlling light with geometric-phase holograms. Opt. Photonics N. 27, 22–29 (2016). http://www.opticsinfobase.org/opn/abstract.cfm?uri=opn-27-2-22 |
[185] |
Pancharatnam, S. Generalized theory of interference, and its applications. Proc. Indian Acad. Sci. Sect. A 44, 247–262 (1956). http://www.ias.ac.in/jarch/jgenet/69/185.pdf |
[186] |
Chen, X. Z. et al. Dual-polarity plasmonic metalens for visible light. Nat. Commun. 3, 1198 (2012). doi: 10.1038/ncomms2207 |
[187] |
Meng, Y. et al. Guided mode meta-optics: metasurface-dressed nanophotonic waveguides for arbitrary designer mode couplers and on-chip OAM emitters with configurable topological charge. arXiv Prepr. 2106, 03559 (2021). http://arxiv.org/abs/2106.03559v1 |
[188] |
Nadovich, C. T. et al. Focused apodized forked grating coupler. Opt. Express 25, 26861–26874 (2017). doi: 10.1364/OE.25.026861 |
[189] |
Shen, Y. J. et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light.: Sci. Appl. 8, 90 (2019). doi: 10.1038/s41377-019-0194-2 |
[190] |
Yang, R. et al. On-chip metalenses based on one-dimensional gradient trench in the broadband visible. Opt. Lett. 45, 5640–5643 (2020). doi: 10.1364/OL.405446 |
[191] |
Liao, K. et al. AI-assisted on-chip nanophotonic convolver based on silicon metasurface. Nanophotonics 9, 3315–3322 (2020). doi: 10.1515/nanoph-2020-0069 |
[192] |
Fang, Z. R. et al. 1D self-healing beams in integrated silicon photonics. arXiv Prepr. 2103, 12254 (2021). http://arxiv.org/abs/2103.12254 |
[193] |
Neira, A. D. et al. Ultrafast all-optical modulation with hyperbolic metamaterial integrated in Si photonic circuitry. Opt. Express 22, 10987–10994 (2014). doi: 10.1364/OE.22.010987 |
[194] |
Rodríguez-Fortuño, F. J., Espinosa-Soria, A. & Martínez, A. Exploiting metamaterials, plasmonics and nanoantennas concepts in silicon photonics. J. Opt. 18, 123001 (2016). doi: 10.1088/2040-8978/18/12/123001 |
[195] |
Halir, R. et al. Waveguide sub-wavelength structures: a review of principles and applications. Laser Photonics Rev. 9, 25–49 (2015). doi: 10.1002/lpor.201400083 |
[196] |
Wang, Y. et al. Ultra-compact sub-wavelength grating polarization splitter-rotator for silicon-on-insulator platform. IEEE Photonics J. 8, 7805709 (2016). http://www.researchgate.net/profile/Han_Yun3/publication/310664383_Ultra-Compact_Sub-Wavelength_Grating_Polarization_Splitter-Rotator_for_Silicon-on-Insulator_Platform/links/583d392708ae502a85e53c4b.pdf |
[197] |
González-Andrade, D. et al. Ultra-broadband mode converter and multiplexer based on sub-wavelength structures. IEEE Photonics J. 10, 2201010 (2018). http://digital.csic.es/bitstream/10261/172697/1/Ultra-Broadband.pdf |
[198] |
Xu, H. N., Dai, D. X. & Shi, Y. C. Ultra-broadband and ultra-compact on-chip silicon polarization beam splitter by using hetero-anisotropic metamaterials. Laser Photonics Rev. 13, 1800349 (2019). doi: 10.1002/lpor.201800349 |
[199] |
Halir, R. et al. Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial. Laser Photonics Rev. 10, 1039–1046 (2016). doi: 10.1002/lpor.201600213 |
[200] |
Xu, Y. & Xiao, J. B. Ultracompact and high efficient silicon-based polarization splitter-rotator using a partially-etched subwavelength grating coupler. Sci. Rep. 6, 27949 (2016). doi: 10.1038/srep27949 |
[201] |
Zhang, Y. et al. High-extinction-ratio silicon polarization beam splitter with tolerance to waveguide width and coupling length variations. Opt. Express 24, 6586–6593 (2016). doi: 10.1364/OE.24.006586 |
[202] |
Guan, X. W. et al. Low-loss ultracompact transverse-magnetic-pass polarizer with a silicon subwavelength grating waveguide. Opt. Lett. 39, 4514–4517 (2014). doi: 10.1364/OL.39.004514 |
[203] |
Barwicz, T. et al. Integrated metamaterial interfaces for self-aligned fiber-to-chip coupling in volume manufacturing. IEEE J. Sel. Top. Quantum Electron. 25, 4700313 (2019). http://www.onacademic.com/detail/journal_1000040911077510_9c39.html |
[204] |
Cheben, P. et al. Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency. Opt. Express 23, 22553–22563 (2015). doi: 10.1364/OE.23.022553 |
[205] |
Xu, H. N., Dai, D. X. & Shi, Y. C. Anisotropic metamaterial-assisted all-silicon polarizer with 415-nm bandwidth. Photonics Res. 7, 1432–1439 (2019). doi: 10.1364/PRJ.7.001432 |
[206] |
Levy, U. et al. Inhomogenous dielectric metamaterials with space-variant polarizability. Phys. Rev. Lett. 98, 243901 (2007). doi: 10.1103/PhysRevLett.98.243901 |
[207] |
Hassan, K. et al. Integrated photonic guided metalens based on a pseudo-graded index distribution. Sci. Rep. 10, 1123 (2020). doi: 10.1038/s41598-020-58029-z |
[208] |
Li, B. R., He, Y. R. & He, S. L. Investigation of light trapping effect in hyperbolic metamaterial slow-light waveguides. Appl. Phys. Express 8, 082601 (2015). doi: 10.7567/APEX.8.082601 |
[209] |
Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000). doi: 10.1103/PhysRevLett.85.3966 |
[210] |
Tichit, P. H., Burokur, S. N. & de Lustrac, A. Waveguide taper engineering using coordinate transformation technology. Opt. Express 18, 767–772 (2010). doi: 10.1364/OE.18.000767 |
[211] |
Zhang, K. et al. Arbitrary waveguide connector based on embedded optical transformation. Opt. Express 18, 17273–17279 (2010). doi: 10.1364/OE.18.017273 |
[212] |
Ozgun, O. & Kuzuoglu, M. Utilization of anisotropic metamaterial layers in waveguide miniaturization and transitions. IEEE Microw. Wirel. Compon. Lett. 17, 754–756 (2007). doi: 10.1109/LMWC.2007.908039 |
[213] |
Viaene, S. et al. Mitigating optical singularities in coordinate-based metamaterial waveguides. Phys. Rev. B 95, 155412 (2017). doi: 10.1103/PhysRevB.95.155412 |
[214] |
Fu, Y. Y., Xu, Y. D. & Chen, H. Y. Additional modes in a waveguide system of zero-index-metamaterials with defects. Sci. Rep. 4, 6428 (2014). http://www.onacademic.com/detail/journal_1000037420971010_b6a9.html |
[215] |
Ding, W. Q. et al. Arbitrary waveguide bends using isotropic and homogeneous metamaterial. Appl. Phys. Lett. 96, 041102 (2010). doi: 10.1063/1.3298367 |
[216] |
Reshef, O. et al. Direct observation of phase-free propagation in a silicon waveguide. ACS Photonics 4, 2385–2389 (2017). doi: 10.1021/acsphotonics.7b00760 |
[217] |
Ji, W. J., Luo, J. & Lai, Y. Extremely anisotropic epsilon-near-zero media in waveguide metamaterials. Opt. Express 27, 19463–19473 (2019). doi: 10.1364/OE.27.019463 |
[218] |
Edwards, B. et al. Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide. Phys. Rev. Lett. 100, 033903 (2008). doi: 10.1103/PhysRevLett.100.033903 |
[219] |
Zhang, B. et al. THz band-stop filter using metamaterials surfaced on LiNbO3 sub-wavelength slab waveguide. Opt. Express 23, 16042–16051 (2015). doi: 10.1364/OE.23.016042 |
[220] |
Hamouche, H. & Shabat, M. M. Enhanced absorption in silicon metamaterials waveguide structure. Appl. Phys. A 122, 685 (2016). doi: 10.1007/s00339-016-0206-5 |
[221] |
Tang, T. T., Li, C. Y. & Luo, L. Enhanced spin hall effect of tunneling light in hyperbolic metamaterial waveguide. Sci. Rep. 6, 30762 (2016). doi: 10.1038/srep30762 |
[222] |
Xu, Y. D. et al. Broadband asymmetric waveguiding of light without polarization limitations. Nat. Commun. 4, 2561 (2013). doi: 10.1038/ncomms3561 |
[223] |
Wang, H. X. et al. Broadband mode conversion via gradient index metamaterials. Sci. Rep. 6, 24529 (2016). doi: 10.1038/srep24529 |
[224] |
Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019). doi: 10.1038/s41586-019-1666-5 |
[225] |
Mirhosseini, M. et al. Superconducting metamaterials for waveguide quantum electrodynamics. Nat. Commun. 9, 3706 (2018). doi: 10.1038/s41467-018-06142-z |
[226] |
Rakhmanov, A. L. et al. Quantum metamaterials: electromagnetic waves in a Josephson qubit line. Phys. Rev. B 77, 144507 (2008). doi: 10.1103/PhysRevB.77.144507 |
[227] |
Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347–400 (2015). doi: 10.1103/RevModPhys.87.347 |
[228] |
Kostovski, G., Stoddart, P. R. & Mitchell, A. The optical fiber tip: An inherently light-coupled microscopic platform for micro- and nanotechnologies. Adv. Mater. 26, 3798–3820 (2014). doi: 10.1002/adma.201304605 |
[229] |
Yu, N. F. & Capasso, F. Optical metasurfaces and prospect of their applications including fiber optics. J. Lightwave Technol. 33, 2344–2358 (2015). doi: 10.1109/JLT.2015.2404860 |
[230] |
Tong, L. M. et al. Optical microfibers and nanofibers: a tutorial. Opt. Commun. 285, 4641–4647 (2012). doi: 10.1016/j.optcom.2012.07.068 |
[231] |
Cusano, A. et al. Lab-on-fiber technology (Springer, 2015). |
[232] |
Vaiano, P. et al. Lab on fiber technology for biological sensing applications. Laser Photonics Rev. 10, 922–961 (2016). doi: 10.1002/lpor.201600111 |
[233] |
Galeotti, F., Pisco, M. & Cusano, A. Self-assembly on optical fibers: a powerful nanofabrication tool for next generation "lab-on-fiber" optrodes. Nanoscale 10, 22673–22700 (2018). doi: 10.1039/C8NR06002A |
[234] |
Pisco, M. & Cusano, A. Lab-on-fiber technology: a roadmap toward multifunctional plug and play platforms. Sensors 20, 4705 (2020). doi: 10.3390/s20174705 |
[235] |
Plidschun, M. et al. Ultrahigh numerical aperture meta-fibre for flexible optical trapping. Light.: Sci. Appl. 10, 57 (2021). doi: 10.1038/s41377-021-00491-z |
[236] |
Liu, Y. X. et al. Compact microfiber Bragg gratings with high-index contrast. Opt. Lett. 36, 3115–3117 (2011). doi: 10.1364/OL.36.003115 |
[237] |
Ding, M., Zervas, M. N. & Brambilla, G. A compact broadband microfiber Bragg grating. Opt. Express 19, 15621–15626 (2011). doi: 10.1364/OE.19.015621 |
[238] |
Petersen, J., Volz, J. & Rauschenbeutel, A. Chiral nanophotonic waveguide interface based on spin-orbit interaction of light. Science 346, 67–71 (2014). doi: 10.1126/science.1257671 |
[239] |
Liu, T. M. et al. Polarization conversion based on an all-dielectric metasurface for optical fiber applications. J. Phys. D: Appl. Phys. 50, 334001 (2017). doi: 10.1088/1361-6463/aa79dd |
[240] |
Smith, E. J. et al. Combined surface Plasmon and classical waveguiding through metamaterial fiber design. Nano Lett. 10, 1–5 (2010). doi: 10.1021/nl900550j |
[241] |
Hasan, M. M. et al. Robust optical fiber using single negative metamaterial cladding. IEEE Photonics Technol. Lett. 25, 1043–1046 (2013). doi: 10.1109/LPT.2013.2259620 |
[242] |
Zeisberger, M., Tuniz, A. & Schmidt, M. A. Analytic model for the complex effective index dispersion of metamaterial-cladding large-area hollow core fibers. Opt. Express 24, 20515–20528 (2016). doi: 10.1364/OE.24.020515 |
[243] |
Li, H. S. et al. Flexible single-mode hollow-core terahertz fiber with metamaterial cladding. Optica 3, 941–947 (2016). doi: 10.1364/OPTICA.3.000941 |
[244] |
Lai, C. C. et al. Architecting a nonlinear hybrid crystal-glass metamaterial fiber for all-optical photonic integration. J. Mater. Chem. C. 6, 1659–1669 (2018). doi: 10.1039/C7TC05112C |
[245] |
Minn, K. et al. Excitation of epsilon-near-zero resonance in ultra-thin indium tin oxide shell embedded nanostructured optical fiber. Sci. Rep. 8, 2342 (2018). doi: 10.1038/s41598-018-19633-2 |
[246] |
Tuniz, A. et al. Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances. Nat. Commun. 4, 2706 (2013). doi: 10.1038/ncomms3706 |
[247] |
Hayashi, J. G. et al. Fabrication of soft-glass-based wire array metamaterial fibers for applications at infrared frequencies. J. Lightwave Technol. 37, 5001–5009 (2019). doi: 10.1109/JLT.2019.2926808 |
[248] |
Chan, E. A. et al. Plasmono-atomic interactions on a fiber tip. Appl. Phys. Lett. 116, 183101 (2020). doi: 10.1063/1.5142411 |
[249] |
Principe, M. et al. Evaluation of fiber-optic phase-gradient meta-tips for sensing applications. Nanomaterials Nanotechnol. 9, 1–9 (2019). http://www.onacademic.com/detail/journal_1000041653724599_e52b.html |
[250] |
Dhawan, A., Gerhold, M. D. & Muth, J. F. Plasmonic structures based on subwavelength apertures for chemical and biological sensing applications. IEEE Sens. J. 8, 942–950 (2008). doi: 10.1109/JSEN.2008.923933 |
[251] |
Lin, Y. B., Guo, J. P. & Lindquist, R. G. Demonstration of an ultra-wideband optical fiber inline polarizer with metal nano-grid on the fiber tip. Opt. Express 17, 17849–17854 (2009). doi: 10.1364/OE.17.017849 |
[252] |
Arce, C. L. et al. Silicon-on-insulator microring resonator sensor integrated on an optical fiber facet. IEEE Photonics Technol. Lett. 23, 890–892 (2011). doi: 10.1109/LPT.2011.2143704 |
[253] |
Lin, Y. B., Zou, Y. & Lindquist, R. G. A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing. Biomed. Opt. Express 2, 478–484 (2011). doi: 10.1364/BOE.2.000478 |
[254] |
Kim, H. T. & Yu, M. Lab-on-fiber nanoprobe with dual high-Q Rayleigh anomaly-surface Plasmon Polariton resonances for multiparameter sensing. Sci. Rep. 9, 1922 (2019). doi: 10.1038/s41598-018-38113-1 |
[255] |
Jeong, H. H. et al. Real-time label-free immunoassay of interferon-gamma and prostate-specific antigen using a Fiber-Optic Localized Surface Plasmon Resonance sensor. Biosens. Bioelectron. 39, 346–351 (2013). doi: 10.1016/j.bios.2012.08.013 |
[256] |
Kang, S. H. et al. Subwavelength plasmonic lens patterned on a composite optical fiber facet for quasi-one-dimensional Bessel beam generation. Appl. Phys. Lett. 98, 241103 (2011). doi: 10.1063/1.3596442 |
[257] |
Zhao, Y. F. et al. Meta-facet fiber for twisting ultra-broadband light with high phase purity. Appl. Phys. Lett. 113, 061103 (2018). doi: 10.1063/1.5043268 |
[258] |
Wang, X. et al. Metasurface-on-fiber enabled orbital angular momentum modes in conventional optical fibers. In Proceedings of 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications (IEEE, 2014). |
[259] |
Du, J. et al. Design and fabrication of metasurface on conventional optical fiber facet for linearly polarized mode (LP11) generation at visible light wavelength. In Proceedings of 2016 Conference on Lasers and Electro-Optics (IEEE, 2016). |
[260] |
Rauch, J. Y. et al. Smallest microhouse in the world, assembled on the facet of an optical fiber by origami and welded in the µrobotex nanofactory. J. Vac. Sci. Technol. A 36, 041601 (2018). |
[261] |
Kou, J. L. et al. Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe. Opt. Express 19, 18452–18457 (2011). doi: 10.1364/OE.19.018452 |
[262] |
Feng, J. et al. An optical fiber tip micrograting thermometer. IEEE Photonics J. 3, 810–814 (2011). doi: 10.1109/JPHOT.2011.2165835 |
[263] |
Nayak, K. P. et al. Cavity formation on an optical nanofiber using focused ion beam milling technique. Opt. Express 19, 14040–14050 (2011). doi: 10.1364/OE.19.014040 |
[264] |
Nguyen-Dang, T. et al. Controlled sub-micrometer hierarchical textures engineered in polymeric fibers and microchannels via thermal drawing. Adv. Funct. Mater. 27, 1605935 (2017). doi: 10.1002/adfm.201605935 |
[265] |
Mu, J. et al. Sheath-run artificial muscles. Science 365, 150–155 (2019). doi: 10.1126/science.aaw2403 |
[266] |
Wang, Z. et al. Designer patterned functional fibers via direct imprinting in thermal drawing. Nat. Commun. 11, 3842 (2020). doi: 10.1038/s41467-020-17674-8 |
[267] |
Abouraddy, A. F. et al. Towards multimaterial multifunctional fibres that see, hear, sense and communicate. Nat. Mater. 6, 336–347 (2007). doi: 10.1038/nmat1889 |
[268] |
Xue, S. C. et al. Analysis of capillary instability in metamaterials fabrication using fiber drawing technology. J. Lightwave Technol. 35, 2167–2174 (2017). doi: 10.1109/JLT.2017.2669307 |
[269] |
Loke, G. et al. Recent progress and perspectives of thermally drawn multimaterial fiber electronics. Adv. Mater. 32, 1904911 (2020). doi: 10.1002/adma.201904911 |
[270] |
Fleming, S. et al. Tunable metamaterials fabricated by fiber drawing. J. Optical Soc. Am. B 34, D81–D85 (2017). doi: 10.1364/JOSAB.34.000D81 |
[271] |
Wang, A. N. et al. Fiber metamaterials with negative magnetic permeability in the terahertz. Optical Mater. Express 1, 115–120 (2011). doi: 10.1364/OME.1.000115 |
[272] |
Yan, M. & Mortensen, N. A. Hollow-core infrared fiber incorporating metal-wire metamaterial. Opt. Express 17, 14851–14864 (2009). doi: 10.1364/OE.17.014851 |
[273] |
Skorobogatiy, M. & Dupuis, A. Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance. Appl. Phys. Lett. 90, 113514 (2007). doi: 10.1063/1.2713137 |
[274] |
Pratap, D. et al. Anisotropic metamaterial optical fibers. Opt. Express 23, 9074–9085 (2015). doi: 10.1364/OE.23.009074 |
[275] |
Townsend, S., Zhou, S. W. & Li, Q. Design of fiber metamaterials with negative refractive index in the infrared. Opt. Express 23, 18236–18242 (2015). doi: 10.1364/OE.23.018236 |
[276] |
Hassani, A., Dupuis, A. & Skorobogatiy, M. Low loss porous terahertz fibers containing multiple subwavelength holes. Appl. Phys. Lett. 92, 071101 (2008). doi: 10.1063/1.2840164 |
[277] |
Atakaramians, S. et al. Fiber-drawn metamaterial for THz waveguiding and imaging. J. Infrared Millim. Terahertz Waves 38, 1162–1178 (2017). doi: 10.1007/s10762-017-0383-0 |
[278] |
Bhardwaj, A., Srivastava, K. V. & Ramakrishna, S. A. Enhanced coupling of light from subwavelength sources into a hyperbolic metamaterial fiber. J. Lightwave Technol. 37, 3064–3072 (2019). doi: 10.1109/JLT.2019.2910155 |
[279] |
Atakaramians, S. et al. Hollow-core uniaxial metamaterial clad fibers with dispersive metamaterials. J. Optical Soc. Am. B 30, 851–867 (2013). doi: 10.1364/JOSAB.30.000851 |
[280] |
Sakr, H. et al. Hollow core optical fibres with comparable attenuation to silica fibres between 600 and 1100 nm. Nat. Commun. 11, 6030 (2020). doi: 10.1038/s41467-020-19910-7 |
[281] |
Yang, Y. M. et al. High-harmonic generation from an epsilon-near-zero material. Nat. Phys. 15, 1022–1026 (2019). doi: 10.1038/s41567-019-0584-7 |
[282] |
Hayashi, J. G. et al. Towards subdiffraction imaging with wire array metamaterial hyperlenses at MIR frequencies. Opt. Express 27, 21420–21434 (2019). doi: 10.1364/OE.27.021420 |
[283] |
Kanamori, Y., Okochi, M. & Hane, K. Fabrication of antireflection subwavelength gratings at the tips of optical fibers using UV nanoimprint lithography. Opt. Express 21, 322–328 (2013). doi: 10.1364/OE.21.000322 |
[284] |
Calafiore, G. et al. Campanile near-field probes fabricated by nanoimprint lithography on the facet of an optical fiber. Sci. Rep. 7, 1651 (2017). doi: 10.1038/s41598-017-01871-5 |
[285] |
Yang, X. et al. Nanopillar array on a fiber facet for highly sensitive surface-enhanced Raman scattering. Opt. Express 20, 24819–24826 (2012). doi: 10.1364/OE.20.024819 |
[286] |
Petrušis, A. et al. The align-and-shine technique for series production of photolithography patterns on optical fibres. J. Micromech. Microeng. 19, 047001 (2009). doi: 10.1088/0960-1317/19/4/047001 |
[287] |
Zhou, C. et al. All-dielectric fiber meta-tip enabling vortex generation and beam collimation for optical interconnect. Laser Photonics Rev. 15, 2000581 (2021). doi: 10.1002/lpor.202000581 |
[288] |
Reader-Harris, P. & Falco, A. D. Nanoplasmonic filters for hollow core photonic crystal fibers. ACS Photonics 1, 985–989 (2014). doi: 10.1021/ph500222w |
[289] |
Juhl, M., Mueller, J. P. B. & Leosson, K. Metasurface polarimeter on optical fiber facet by nano-transfer to UV-curable hybrid polymer. IEEE J. Sel. Top. Quantum Electron. 25, 4500107 (2019). http://www.onacademic.com/detail/journal_1000041625053399_b5be.html |
[290] |
Yu, J. et al. All-fiber focused beam generator integrated on an optical fiber tip. Appl. Phys. Lett. 116, 241102 (2020). doi: 10.1063/5.0007022 |
[291] |
Kostovski, G. et al. Sub-15 nm optical fiber nanoimprint lithography: a parallel, self-aligned and portable approach. Adv. Mater. 23, 531–535 (2011). doi: 10.1002/adma.201002796 |
[292] |
Vanmol, K. et al. 3D direct laser writing of microstructured optical fiber tapers on single-mode fibers for mode-field conversion. Opt. Express 28, 36147–36158 (2020). doi: 10.1364/OE.409148 |
[293] |
Xie, Z. W. et al. Integrated (de)multiplexer for orbital angular momentum fiber communication. Photonics Res. 6, 743–749 (2018). doi: 10.1364/PRJ.6.000743 |
[294] |
Kostovski, G. et al. Nanoimprinted optical fibres: biotemplated nanostructures for SERS sensing. Biosens. Bioelectron. 24, 1531–1535 (2009). doi: 10.1016/j.bios.2008.10.016 |
[295] |
Lipomi, D. J. et al. Patterning the tips of optical fibers with metallic nanostructures using nanoskiving. Nano Lett. 11, 632–636 (2011). doi: 10.1021/nl103730g |
[296] |
Smythe, E. J. et al. A technique to transfer metallic nanoscale patterns to small and non-planar surfaces. ACS Nano 3, 59–65 (2009). doi: 10.1021/nn800720r |
[297] |
Smythe, E. J. et al. Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection. Nano Lett. 9, 1132–1138 (2009). doi: 10.1021/nl803668u |
[298] |
Shambat, G. et al. Optical fiber tips functionalized with semiconductor photonic crystal cavities. Appl. Phys. Lett. 99, 191102 (2011). doi: 10.1063/1.3660278 |
[299] |
Wang, B. W. et al. Photonic crystal cavity on optical fiber facet for refractive index sensing. Opt. Lett. 37, 833–835 (2012). doi: 10.1364/OL.37.000833 |
[300] |
Jia, P. P. & Yang, J. Integration of large-area metallic nanohole arrays with multimode optical fibers for surface plasmon resonance sensing. Appl. Phys. Lett. 102, 243107 (2013). doi: 10.1063/1.4811700 |
[301] |
Jia, P. P. & Yang, J. A plasmonic optical fiber patterned by template transfer as a high-performance flexible nanoprobe for real-time biosensing. Nanoscale 6, 8836–8843 (2014). doi: 10.1039/C4NR01411A |
[302] |
Kawata, S. et al. Finer features for functional microdevices. Nature 412, 697–698 (2001). doi: 10.1038/35089130 |
[303] |
Ma, Z. C. et al. Femtosecond laser programmed artificial musculoskeletal systems. Nat. Commun. 11, 4536 (2020). doi: 10.1038/s41467-020-18117-0 |
[304] |
Saha, S. K. et al. Scalable submicrometer additive manufacturing. Science 366, 105–109 (2019). doi: 10.1126/science.aax8760 |
[305] |
Gissibl, T. et al. Two-photon direct laser writing of ultracompact multi-lens objectives. Nat. Photonics 10, 554–560 (2016). doi: 10.1038/nphoton.2016.121 |
[306] |
Weber, K. et al. Single mode fiber based delivery of OAM light by 3D direct laser writing. Opt. Express 25, 19672–19679 (2017). doi: 10.1364/OE.25.019672 |
[307] |
Thompson, A. J., Power, M. & Yang, G. Z. Micro-scale fiber-optic force sensor fabricated using direct laser writing and calibrated using machine learning. Opt. Express 26, 14186–14200 (2018). doi: 10.1364/OE.26.014186 |
[308] |
Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013). doi: 10.1038/nature12066 |
[309] |
Chen, Y. et al. Vector vortex beam emitter embedded in a photonic chip. Phys. Rev. Lett. 124, 153601 (2020). doi: 10.1103/PhysRevLett.124.153601 |
[310] |
Scheerlinck, S. et al. Flexible metal grating based optical fiber probe for photonic integrated circuits. Appl. Phys. Lett. 92, 031104 (2008). doi: 10.1063/1.2827589 |
[311] |
Calafiore, G. et al. Nanoimprint of a 3D structure on an optical fiber for light wavefront manipulation. Nanotechnology 27, 375301 (2016). doi: 10.1088/0957-4484/27/37/375301 |
[312] |
Morales-Delgado, E. E. et al. Three-dimensional microfabrication through a multimode optical fiber. Opt. Express 25, 7031–7045 (2017). doi: 10.1364/OE.25.007031 |
[313] |
Consales, M. et al. Lab-on-fiber technology: toward multifunctional optical nanoprobes. ACS Nano 6, 3163–3170 (2012). doi: 10.1021/nn204953e |
[314] |
Lin, Y. B. et al. E-beam patterned gold nanodot arrays on optical fiber tips for localized surface plasmon resonance biochemical sensing. Sensors 10, 9397–9406 (2010). doi: 10.3390/s101009397 |
[315] |
Sasaki, M. et al. Direct photolithography on optical fiber end. Japanese J. Appl. Phys. 41, 4350–4355 (2002). doi: 10.1143/JJAP.41.4350 |
[316] |
Lu, Y. et al. Three-dimensional photolithography technology for a fiber substrate using a microfabricated exposure module. J. Micromech. Microeng. 20, 125013 (2010). doi: 10.1088/0960-1317/20/12/125013 |
[317] |
Lee, Y. et al. Selectively micro-patternable fibers via in-fiber photolithography. ACS Cent. Sci. 6, 2319–2325 (2020). doi: 10.1021/acscentsci.0c01188 |
[318] |
Yan, W. et al. Advanced multimaterial electronic and optoelectronic fibers and textiles. Adv. Mater. 31, 1802348 (2019). doi: 10.1002/adma.201802348 |
[319] |
Alchalaby, A. et al. Investigation of plateau-Rayleigh instability in drawn metal-polymer composite fibers for metamaterials fabrication. J. Lightwave Technol. 34, 2198–2205 (2016). doi: 10.1109/JLT.2015.2511022 |
[320] |
Yaman, M. et al. Arrays of indefinitely long uniform nanowires and nanotubes. Nat. Mater. 10, 494–501 (2011). doi: 10.1038/nmat3038 |
[321] |
Yan, W. et al. Structured nanoscale metallic glass fibres with extreme aspect ratios. Nat. Nanotechnol. 15, 875–882 (2020). doi: 10.1038/s41565-020-0747-9 |
[322] |
Danckwerts, M. & Novotny, L. Optical frequency mixing at coupled gold nanoparticles. Phys. Rev. Lett. 98, 026104 (2007). doi: 10.1103/PhysRevLett.98.026104 |
[323] |
Maier, S. A. Plasmonics: the promise of highly integrated optical devices. IEEE J. Sel. Top. Quantum Electron. 12, 1671–1677 (2006). doi: 10.1109/JSTQE.2006.884086 |
[324] |
Ebbesen, T. W., Genet, C. & Bozhevolnyi, S. I. Surface-plasmon circuitry. Phys. Today 61, 44–50 (2008). doi: 10.1063/1.2930735 |
[325] |
Fang, Y. R. & Sun, M. T. Nanoplasmonic waveguides: Towards applications in integrated nanophotonic circuits. Light.: Sci. Appl. 4, e294 (2015). doi: 10.1038/lsa.2015.67 |
[326] |
Anker, J. N. et al. Biosensing with plasmonic nanosensors. In Nanoscience and Technology (ed. Rodgers, P. ) 308–319 (World Scientific, 2009). |
[327] |
Kneipp, K. et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670 (1997). doi: 10.1103/PhysRevLett.78.1667 |
[328] |
Pendry, J. B. Mimicking surface plasmons with structured surfaces. Science 305, 847–848 (2004). doi: 10.1126/science.1098999 |
[329] |
Maier, S. A. et al. Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. Phys. Rev. Lett. 97, 176805 (2006). doi: 10.1103/PhysRevLett.97.176805 |
[330] |
Zayats, A. V., Smolyaninov, I. I. & Maradudin, A. A. Nano-optics of surface plasmon polaritons. Phys. Rep. 408, 131–314 (2005). doi: 10.1016/j.physrep.2004.11.001 |
[331] |
Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988). |
[332] |
Zia, R. et al. Plasmonics: the next chip-scale technology. Mater. Today 9, 20–27 (2006). http://d.wanfangdata.com.cn/periodical/20d91c3c024c32424f7dc54da4cc4fd4 |
[333] |
Wang, J. F. et al. High-efficiency spoof plasmon polariton coupler mediated by gradient metasurfaces. Appl. Phys. Lett. 101, 201104 (2012). doi: 10.1063/1.4767219 |
[334] |
Duan, J. W. et al. High-efficiency chirality-modulated spoof surface plasmon meta-coupler. Sci. Rep. 7, 1354 (2017). doi: 10.1038/s41598-017-01664-w |
[335] |
Yin, L. Z. et al. High-efficiency terahertz spin-decoupled meta-coupler for spoof surface plasmon excitation and beam steering. Opt. Express 27, 18928–18939 (2019). doi: 10.1364/OE.27.018928 |
[336] |
Tanemura, T. et al. Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler. Nano Lett. 11, 2693–2698 (2011). doi: 10.1021/nl200938h |
[337] |
Xu, Q. et al. Polarization-controlled surface plasmon holography. Laser Photonics Rev. 11, 1600212 (2017). doi: 10.1002/lpor.201600212 |
[338] |
Zhang, X. Q. et al. Anomalous surface wave launching by handedness phase control. Adv. Mater. 27, 7123–7129 (2015). doi: 10.1002/adma.201502008 |
[339] |
Bozhevolnyi, S. I. et al. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508–511 (2006). doi: 10.1038/nature04594 |
[340] |
Oulton, R. F. et al. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photonics 2, 496–500 (2008). doi: 10.1038/nphoton.2008.131 |
[341] |
Stockman, M. I. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 93, 137404 (2004). doi: 10.1103/PhysRevLett.93.137404 |
[342] |
Zhang, Y. et al. Terahertz spoof surface-plasmon-polariton subwavelength waveguide. Photonics Res. 6, 18–23 (2018). doi: 10.1364/PRJ.6.000018 |
[343] |
Kumar, G. et al. Terahertz surface plasmon waveguide based on a one-dimensional array of silicon pillars. N. J. Phys. 15, 085031 (2013). doi: 10.1088/1367-2630/15/8/085031 |
[344] |
Shen, X. P. et al. Conformal surface plasmons propagating on ultrathin and flexible films. Proc. Natl Acad. Sci. USA 110, 40–45 (2013). doi: 10.1073/pnas.1210417110 |
[345] |
Wei, H. et al. Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks. Nano Lett. 11, 471–475 (2011). doi: 10.1021/nl103228b |
[346] |
Wei, H. et al. Cascaded logic gates in nanophotonic plasmon networks. Nat. Commun. 2, 387 (2011). doi: 10.1038/ncomms1388 |
[347] |
Fu, Y. L. et al. All-optical logic gates based on nanoscale plasmonic slot waveguides. Nano Lett. 12, 5784–5790 (2012). doi: 10.1021/nl303095s |
[348] |
Li, Y. et al. Transversely divergent second harmonic generation by surface plasmon polaritons on single metallic nanowires. Nano Lett. 17, 7803–7808 (2017). doi: 10.1021/acs.nanolett.7b04016 |
[349] |
Shi, J. J. et al. Efficient second harmonic generation in a hybrid plasmonic waveguide by mode interactions. Nano Lett. 19, 3838–3845 (2019). doi: 10.1021/acs.nanolett.9b01004 |
[350] |
Lu, F. F. et al. Efficient second-harmonic generation in nonlinear plasmonic waveguide. Opt. Lett. 36, 3371–3373 (2011). doi: 10.1364/OL.36.003371 |
[351] |
Guo, Q. B. et al. Routing a chiral Raman signal based on spin-orbit interaction of light. Phys. Rev. Lett. 123, 183903 (2019). doi: 10.1103/PhysRevLett.123.183903 |
[352] |
Hohenau, A. et al. Dielectric optical elements for surface plasmons. Opt. Lett. 30, 893–895 (2005). doi: 10.1364/OL.30.000893 |
[353] |
Ditlbacher, H. et al. Two-dimensional optics with surface Plasmon polaritons. Appl. Phys. Lett. 81, 1762–1764 (2002). doi: 10.1063/1.1506018 |
[354] |
Li, L. et al. Plasmonic airy beam generated by in-plane diffraction. Phys. Rev. Lett. 107, 126804 (2011). doi: 10.1103/PhysRevLett.107.126804 |
[355] |
Zhao, C. L. et al. A reconfigurable plasmofluidic lens. Nat. Commun. 4, 2305 (2013). doi: 10.1038/ncomms3305 |
[356] |
Zentgraf, T. et al. Plasmonic Luneburg and Eaton lenses. Nat. Nanotechnol. 6, 151–155 (2011). doi: 10.1038/nnano.2010.282 |
[357] |
Chen, Y. G., Chen, Y. H. & Li, Z. Y. Direct method to control surface plasmon polaritons on metal surfaces. Opt. Lett. 39, 339–342 (2014). doi: 10.1364/OL.39.000339 |
[358] |
Chen, Y. G., Wang, Y. H. & Li, Z. Y. Complicated wavefront shaping of surface Plasmon polaritons on metal surface by holographic groove patterns. Plasmonics 9, 1057–1062 (2014). doi: 10.1007/s11468-014-9714-3 |
[359] |
Dong, S. H. et al. Dielectric meta-walls for surface plasmon focusing and Bessel beam generation. Europhys. Lett. 122, 67002 (2018). doi: 10.1209/0295-5075/122/67002 |
[360] |
Guan, F. X. et al. Scatterings from surface plasmons to propagating waves at plasmonic discontinuities. Sci. Bull. 64, 802–807 (2019). doi: 10.1016/j.scib.2019.05.003 |
[361] |
Lezec, H. J. et al. Beaming light from a subwavelength aperture. Science 297, 820–822 (2002). doi: 10.1126/science.1071895 |
[362] |
Dolev, I., Epstein, I. & Arie, A. Surface-plasmon holographic beam shaping. Phys. Rev. Lett. 109, 203903 (2012). doi: 10.1103/PhysRevLett.109.203903 |
[363] |
Tang, X. M. et al. Converting surface plasmon to spatial airy beam by graded grating on metal surface. Opt. Lett. 38, 1733–1735 (2013). doi: 10.1364/OL.38.001733 |
[364] |
Baron, A. et al. Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons. Nano Lett. 11, 4207–4212 (2011). doi: 10.1021/nl202135w |
[365] |
Li, L. et al. Plasmonic polarization generator in well-routed beaming. Light.: Sci. Appl. 4, e330 (2015). doi: 10.1038/lsa.2015.103 |
[366] |
Hughes, T. W. et al. Adjoint method and inverse design for nonlinear nanophotonic devices. ACS Photonics 5, 4781–4787 (2018). doi: 10.1021/acsphotonics.8b01522 |
[367] |
Lalau-Keraly, C. M. et al. Adjoint shape optimization applied to electromagnetic design. Opt. Express 21, 21693–21701 (2013). doi: 10.1364/OE.21.021693 |
[368] |
Piggott, A. Y. et al. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat. Photonics 9, 374–377 (2015). doi: 10.1038/nphoton.2015.69 |
[369] |
Johnson, S. G. et al. Perturbation theory for Maxwell's equations with shifting material boundaries. Phys. Rev. E 65, 066611 (2002). doi: 10.1103/PhysRevE.65.066611 |
[370] |
Lu, L. L. Z. et al. Inverse-designed single-step-etched colorless 3 dB couplers based on RIE-lag-insensitive PhC-like subwavelength structures. Opt. Lett. 41, 5051–5054 (2016). doi: 10.1364/OL.41.005051 |
[371] |
Bendsoe, M. P. & Sigmund, O. Topology Optimization: Theory, Methods, and Applications (Springer, 2013). |
[372] |
Haslinger, J. & Mäkinen, R. A. E. Introduction to Shape Optimization: Theory, Approximation, and Computation (SIAM, 2003). |
[373] |
Borel, P. I. et al. Topology optimization and fabrication of photonic crystal structures. Opt. Express 12, 1996–2001 (2004). doi: 10.1364/OPEX.12.001996 |
[374] |
Jensen, J. S. & Sigmund, O. Systematic design of photonic crystal structures using topology optimization: low-loss waveguide bends. Appl. Phys. Lett. 84, 2022–2024 (2004). doi: 10.1063/1.1688450 |
[375] |
Tsuji, Y. & Hirayama, K. Design of optical circuit devices using topology optimization method with function-expansion-based refractive index distribution. IEEE Photonics Technol. Lett. 20, 982–984 (2008). doi: 10.1109/LPT.2008.922921 |
[376] |
Frandsen, L. H. & Sigmund, O. Inverse design engineering of all-silicon polarization beam splitters. In Proceedings of SPIE 9756, Photonic and Phononic Properties of Engineered Nanostructures VI (SPIE, 2016). |
[377] |
Frellsen, L. F. et al. Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides. Opt. Express 24, 16866–16873 (2016). doi: 10.1364/OE.24.016866 |
[378] |
Augenstein, Y. & Rockstuhl, C. Inverse design of nanophotonic devices with structural integrity. ACS Photonics 7, 2190–2196 (2020). doi: 10.1021/acsphotonics.0c00699 |
[379] |
Sell, D. et al. Large-angle, multifunctional metagratings based on freeform multimode geometries. Nano Lett. 17, 3752–3757 (2017). doi: 10.1021/acs.nanolett.7b01082 |
[380] |
Sell, D. et al. Ultra-high-efficiency anomalous refraction with dielectric metasurfaces. ACS Photonics 5, 2402–2407 (2018). doi: 10.1021/acsphotonics.8b00183 |
[381] |
Phan, T. et al. High-efficiency, large-area, topology-optimized metasurfaces. Light.: Sci. Appl. 8, 48 (2019). doi: 10.1038/s41377-019-0159-5 |
[382] |
Sell, D. et al. Periodic dielectric metasurfaces with high-efficiency, multiwavelength functionalities. Adv. Optical Mater. 5, 1700645 (2017). doi: 10.1002/adom.201700645 |
[383] |
Shi, Z. J. et al. Continuous angle-tunable birefringence with freeform metasurfaces for arbitrary polarization conversion. Sci. Adv. 6, eaba3367 (2020). doi: 10.1126/sciadv.aba3367 |
[384] |
Yang, J. J., Sell, D. & Fan, J. A. Freeform metagratings based on complex light scattering dynamics for extreme, high efficiency beam steering. Ann. Der Phys. 530, 1700302 (2018). doi: 10.1002/andp.201700302 |
[385] |
Lu, J. & Vučković, J. Objective-first design of high-efficiency, small-footprint couplers between arbitrary nanophotonic waveguide modes. Opt. Express 20, 7221–7236 (2012). doi: 10.1364/OE.20.007221 |
[386] |
Huang, J. et al. Ultra-compact broadband polarization beam splitter with strong expansibility. Photonics Res. 6, 574–578 (2018). doi: 10.1364/PRJ.6.000574 |
[387] |
Huang, J. et al. Implementation of on-chip multi-channel focusing wavelength demultiplexer with regularized digital metamaterials. Nanophotonics 9, 159–166 (2019). doi: 10.1515/nanoph-2019-0368 |
[388] |
Lin, Z., Lončar, M. & Rodriguez, A. W. Topology optimization of multi-track ring resonators and 2D microcavities for nonlinear frequency conversion. Opt. Lett. 42, 2818–2821 (2017). doi: 10.1364/OL.42.002818 |
[389] |
Veronis, G., Dutton, R. W. & Fan, S. H. Method for sensitivity analysis of photonic crystal devices. Opt. Lett. 29, 2288–2290 (2004). doi: 10.1364/OL.29.002288 |
[390] |
Kao, C. Y., Osher, S. & Yablonovitch, E. Maximizing band gaps in two-dimensional photonic crystals by using level set methods. Appl. Phys. B 81, 235–244 (2005). doi: 10.1007/s00340-005-1877-3 |
[391] |
Piggott, A. Y. et al. Fabrication-constrained nanophotonic inverse design. Sci. Rep. 7, 1786 (2017). doi: 10.1038/s41598-017-01939-2 |
[392] |
Skarda, J. et al. Inverse designed cavity-waveguide couplers. In Proceedings of 2019 Conference on Lasers and Electro-Optics (IEEE, 2019). |
[393] |
Sitawarin, C. et al. Inverse-designed photonic fibers and metasurfaces for nonlinear frequency conversion [Invited]. Photonics Res. 6, B82–B89 (2018). doi: 10.1364/PRJ.6.000B82 |
[394] |
Sapra, N. V. et al. Inverse design and demonstration of broadband grating couplers. IEEE J. Sel. Top. Quantum Electron. 25, 6100207 (2019). http://www.stanford.edu/group/nqp/jv_files/papers/sapra_jstqe_broadband_gratings.pdf |
[395] |
Skarda, J. et al. Toward inverse-designed optical interconnect. In Proceedings of 2020 IEEE Photonics Conference (IEEE, 2020). |
[396] |
Ahn, G. H. et al. Inverse design of microresonator dispersion for nonlinear optics. In Proceedings of 2020 Conference on Lasers and Electro-Optics (IEEE, 2020). |
[397] |
Yang, K. Y. et al. Inverse-designed non-reciprocal pulse router for chip-based LiDAR. Nat. Photonics 14, 369–374 (2020). doi: 10.1038/s41566-020-0606-0 |
[398] |
Sapra, N. V. et al. On-chip integrated laser-driven particle accelerator. Science 367, 79–83 (2020). doi: 10.1126/science.aay5734 |
[399] |
Dory, C. et al. Inverse-designed diamond photonics. Nat. Commun. 10, 3309 (2019). doi: 10.1038/s41467-019-11343-1 |
[400] |
Bruns, T. E. & Tortorelli, D. A. Topology optimization of non-linear elastic structures and compliant mechanisms. Computer Methods Appl. Mech. Eng. 190, 3443–3459 (2001). doi: 10.1016/S0045-7825(00)00278-4 |
[401] |
Sigmund, O. On the design of compliant mechanisms using topology optimization. Mech. Struct. Mach. 25, 493–524 (1997). doi: 10.1080/08905459708945415 |
[402] |
Bendsøe, M. P. & Soares, C. A. M. Topology Design of Structures (Kluwer Academic Publishers, 1993). |
[403] |
Jensen, J. S. & Sigmund, O. Topology optimization of photonic crystal structures: a high-bandwidth low-loss T-junction waveguide. J. Optical Soc. Am. B 22, 1191–1198 (2005). doi: 10.1364/JOSAB.22.001191 |
[404] |
Chakrabarti, A. Learning sensor multiplexing design through back-propagation. In Proceedings of the 30th International Conference on Neural Information Processing Systems 3089–3097 (Curran Associates Inc., 2016). |
[405] |
Frei, W. R., Tortorelli, D. A. & Johnson, H. T. Geometry projection method for optimizing photonic nanostructures. Opt. Lett. 32, 77–79 (2007). doi: 10.1364/OL.32.000077 |
[406] |
Zhou, M. D. et al. Minimum length scale in topology optimization by geometric constraints. Computer Methods Appl. Mech. Eng. 293, 266–282 (2015). doi: 10.1016/j.cma.2015.05.003 |
[407] |
Chen, M. K., Jiang, J. Q. & Fan, J. A. Design space reparameterization enforces hard geometric constraints in inverse-designed nanophotonic devices. ACS Photonics 7, 3141–3151 (2020). doi: 10.1021/acsphotonics.0c01202 |
[408] |
Seldowitz, M. A., Allebach, J. P. & Sweeney, D. W. Synthesis of digital holograms by direct binary search. Appl. Opt. 26, 2788–2798 (1987). doi: 10.1364/AO.26.002788 |
[409] |
Xu, K. et al. Integrated photonic power divider with arbitrary power ratios. Opt. Lett. 42, 855–858 (2017). doi: 10.1364/OL.42.000855 |
[410] |
Augenstein, Y. et al. Inverse photonic design of functional elements that focus Bloch surface waves. Light.: Sci. Appl. 7, 104 (2018). doi: 10.1038/s41377-018-0106-x |
[411] |
Jia, H. et al. Mode-oriented permutation cipher encryption and passive signal switching based on multiobjective optimized silicon subwavelength metastructures. ACS Photonics 7, 2163–2172 (2020). doi: 10.1021/acsphotonics.0c00640 |
[412] |
Majumder, A. et al. Programmable metamaterials & metasurfaces for ultra-compact multi-functional photonics. In Proceedings of 2019 Conference on Lasers and Electro-Optics (IEEE, 2019). |
[413] |
Liu, Y. J. et al. Subwavelength polarization splitter–rotator with ultra-compact footprint. Opt. Lett. 44, 4495–4498 (2019). doi: 10.1364/OL.44.004495 |
[414] |
Abrokwah, K. O. Characterization and modeling of plasma etch pattern dependencies in integrated circuits. PhD thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, (2006). |
[415] |
Chang, W. J. et al. Ultra-compact mode (de) multiplexer based on subwavelength asymmetric Y-junction. Opt. Express 26, 8162–8170 (2018). doi: 10.1364/OE.26.008162 |
[416] |
Lu, L. L. Z. et al. Inverse-designed ultra-compact star-crossings based on PhC-like subwavelength structures for optical intercross connect. Opt. Express 25, 18355–18364 (2017). doi: 10.1364/OE.25.018355 |
[417] |
Zhou, F. Y. et al. Ultra-compact, low-loss and low-crosstalk wavelength demultiplexer for CWDM system based on the photonic-crystal-like metamaterial structure. In Proceedings of 2017 Conference on Lasers and Electro-Optics (IEEE, 2017). |
[418] |
Chang, W. J. et al. Inverse design of a single-step-etched ultracompact silicon polarization rotator. Opt. Express 28, 28343–28351 (2020). doi: 10.1364/OE.399052 |
[419] |
Chang, W. J. et al. Ultra-compact silicon multi-mode waveguide bend based on subwavelength asymmetric Y-junction. In Proceedings of 2018 Optical Fiber Communications Conference and Exposition (IEEE, 2018). |
[420] |
Chang, W. J. et al. Ultracompact dual-mode waveguide crossing based on subwavelength multimode-interference couplers. Photonics Res. 6, 660–665 (2018). doi: 10.1364/PRJ.6.000660 |
[421] |
Chang, W. J. et al. Inverse design and demonstration of an ultracompact broadband dual-mode 3 dB power splitter. Opt. Express 26, 24135–24144 (2018). doi: 10.1364/OE.26.024135 |
[422] |
Ma, H. S. et al. Ultra-compact and efficient 1 × 2 mode converters based on rotatable direct-binary-search algorithm. Opt. Express 28, 17010–17019 (2020). doi: 10.1364/OE.392145 |
[423] |
Spuhler, M. M. et al. A very short planar silica spot-size converter using a nonperiodic segmented waveguide. J. Lightwave Technol. 16, 1680–1685 (1998). doi: 10.1109/50.712252 |
[424] |
Gondarenko, A. & Lipson, M. Low modal volume dipole-like dielectric slab resonator. Opt. Express 16, 17689–17694 (2008). doi: 10.1364/OE.16.017689 |
[425] |
Yu, Z. J., Cui, H. R. & Sun, X. K. Genetically optimized on-chip wideband ultracompact reflectors and Fabry-Perot cavities. Photonics Res. 5, B15–B19 (2017). doi: 10.1364/PRJ.5.000B15 |
[426] |
Xu, P. F. et al. Scaling and cascading compact metamaterial photonic waveguide filter blocks. Opt. Lett. 45, 4072–4075 (2020). doi: 10.1364/OL.398176 |
[427] |
Liu, Z. H. et al. Integrated nanophotonic wavelength router based on an intelligent algorithm. Optica 6, 1367–1373 (2019). doi: 10.1364/OPTICA.6.001367 |
[428] |
Bruck, R. et al. All-optical spatial light modulator for reconfigurable silicon photonic circuits. Optica 3, 396–402 (2016). doi: 10.1364/OPTICA.3.000396 |
[429] |
Mak, J. C. C. et al. Binary particle swarm optimized 2 × 2 power splitters in a standard foundry silicon photonic platform. Opt. Lett. 41, 3868–3871 (2016). doi: 10.1364/OL.41.003868 |
[430] |
Lu, Q. C. et al. Particle swarm optimized ultra-compact polarization beam splitter on silicon-on-insulator. Photonics Nanostruct. - Fundamentals Appl. 32, 19–23 (2018). doi: 10.1016/j.photonics.2018.08.006 |
[431] |
Kennedy, J. & Eberhart, R. C. A discrete binary version of the particle swarm algorithm. In Proceedings of 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, 4104–4108 (IEEE, 1997). |
[432] |
Jiang, J. Q., Chen, M. K. & Fan, J. A. Deep neural networks for the evaluation and design of photonic devices. Nat. Rev. Mater. 6, 679–700 (2021). doi: 10.1038/s41578-020-00260-1 |
[433] |
Wiecha, P. R. et al. Deep learning in nano-photonics: inverse design and beyond. Photonics Res. 9, B182–B200 (2021). doi: 10.1364/PRJ.415960 |
[434] |
Metanet - Stanford. at http://metanet.stanford.edu/code/. |
[435] |
So, S. et al. Deep learning enabled inverse design in nanophotonics. Nanophotonics 9, 1041–1057 (2020). doi: 10.1515/nanoph-2019-0474 |
[436] |
Hegde, R. S. Accelerating optics design optimizations with deep learning. Optical Eng. 58, 065103 (2019). http://arxiv.org/abs/1911.06922v3 |
[437] |
Ho, S. L. & Yang, S. Y. The cross-entropy method and its application to inverse problems. IEEE Trans. Magn. 46, 3401–3404 (2010). doi: 10.1109/TMAG.2010.2044380 |
[438] |
Gostimirovic, D. & Ye, W. N. An open-source artificial neural network model for polarization-insensitive silicon-on-insulator subwavelength grating couplers. IEEE J. Sel. Top. Quantum Electron. 25, 8200205 (2019). http://www.onacademic.com/detail/journal_1000041625052099_e53d.html |
[439] |
Nadell, C. C. et al. Deep learning for accelerated all-dielectric metasurface design. Opt. Express 27, 27523–27535 (2019). doi: 10.1364/OE.27.027523 |
[440] |
Liu, D. J. et al. Training deep neural networks for the inverse design of nanophotonic structures. ACS Photonics 5, 1365–1369 (2018). doi: 10.1021/acsphotonics.7b01377 |
[441] |
Gao, L. et al. A bidirectional deep neural network for accurate silicon color design. Adv. Mater. 31, 1905467 (2019). doi: 10.1002/adma.201905467 |
[442] |
Long, Y. et al. Inverse design of photonic topological state via machine learning. Appl. Phys. Lett. 114, 181105 (2019). doi: 10.1063/1.5094838 |
[443] |
Peurifoy, J. et al. Nanophotonic particle simulation and inverse design using artificial neural networks. Sci. Adv. 4, eaar4206 (2018). doi: 10.1126/sciadv.aar4206 |
[444] |
Asano, T. & Noda, S. Optimization of photonic crystal nanocavities based on deep learning. Opt. Express 26, 32704–32717 (2018). doi: 10.1364/OE.26.032704 |
[445] |
Zhelyeznyakov, M. V., Brunton, S. & Majumdar, A. Deep learning to accelerate scatterer-to-field mapping for inverse design of dielectric metasurfaces. ACS Photonics 8, 481–488 (2021). doi: 10.1021/acsphotonics.0c01468 |
[446] |
Ren, S. M., Padilla, W. & Malof, J. Benchmarking deep inverse models over time, and the neural-adjoint method. arXiv Prepr. 2009, 12919 (2021). http://arxiv.org/abs/2009.12919v2 |
[447] |
Deng, Y. et al. Neural-adjoint method for the inverse design of all-dielectric metasurfaces. Opt. Express 29, 7526–7534 (2021). doi: 10.1364/OE.419138 |
[448] |
Liu, Z. C. et al. Generative model for the inverse design of metasurfaces. Nano Lett. 18, 6570–6576 (2018). doi: 10.1021/acs.nanolett.8b03171 |
[449] |
Jiang, J. Q. et al. Free-form diffractive metagrating design based on generative adversarial networks. ACS Nano 13, 8872–8878 (2019). doi: 10.1021/acsnano. |
[450] |
Wen, F. F., Jiang, J. Q. & Fan, J. A. Robust freeform metasurface design based on progressively growing generative networks. ACS Photonics 7, 2098–2104 (2020). doi: 10.1021/acsphotonics.0c00539 |
[451] |
Dinsdale, N. J. et al. Deep learning enabled design of complex transmission matrices for universal optical components. ACS Photonics 8, 283–295 (2021). http://arxiv.org/abs/2009.11810 |
[452] |
Jiang, J. & Fan, J. A. Global optimization of dielectric metasurfaces using a physics-driven neural network. Nano Lett. 19, 5366–5372 (2019). doi: 10.1021/acs.nanolett.9b01857 |
[453] |
Jiang, J. Q. & Fan, J. A. Multiobjective and categorical global optimization of photonic structures based on ResNet generative neural networks. Nanophotonics 10, 361–369 (2020). doi: 10.1515/nanoph-2020-0407 |
[454] |
Sajedian, I., Badloe, T. & Rho, J. Optimisation of colour generation from dielectric nanostructures using reinforcement learning. Opt. Express 27, 5874–5883 (2019). doi: 10.1364/OE.27.005874 |
[455] |
Wang, H. Z. et al. Automated multi-layer optical design via deep reinforcement learning. Mach. Learn.: Sci. Technol. 2, 025013 (2021). doi: 10.1088/2632-2153/abc327 |
[456] |
Badloe, T., Kim, I. & Rho, J. Biomimetic ultra-broadband perfect absorbers optimised with reinforcement learning. Phys. Chem. Chem. Phys. 22, 2337–2342 (2020). doi: 10.1039/C9CP05621A |
[457] |
Sajedian, I., Lee, H. & Rho, J. Double-deep Q-learning to increase the efficiency of metasurface holograms. Sci. Rep. 9, 10899 (2019). doi: 10.1038/s41598-019-47154-z |
[458] |
Angeris, G., Vučković, J. & Boyd, S. P. Computational bounds for photonic design. ACS Photonics 6, 1232–1239 (2019). doi: 10.1021/acsphotonics.9b00154 |
[459] |
Kuang, Z. Y. & Miller, O. D. Computational bounds to light-matter interactions via local conservation laws. Phys. Rev. Lett. 125, 263607 (2020). doi: 10.1103/PhysRevLett.125.263607 |
[460] |
Angeris, G., Vučković, J. & Boyd, S. Heuristic methods and performance bounds for photonic design. Opt. Express 29, 2827–2854 (2021). doi: 10.1364/OE.415052 |
[461] |
Vercruysse, D. et al. Level-set fabrication constraints for gradient-based optimization of optical devices. Proceedings of 2018 Conference on Lasers and Electro-Optics. San Jose: IEEE, 2018. |
[462] |
Men, H. et al. Robust topology optimization of three-dimensional photonic-crystal band-gap structures. Opt. Express 22, 22632–22648 (2014). doi: 10.1364/OE.22.022632 |
[463] |
Sigmund, O., Jensen, J. S. & Frandsen, L. H. On nanostructured silicon success. Nat. Photonics 10, 142–143 (2016). doi: 10.1038/nphoton.2016.26 |
[464] |
Kojima, K. et al. Acceleration of FDTD-based inverse design using a neural network approach. In Proceedings of the Integrated Photonics Research, Silicon and Nanophotonics 2017 (Optical Society of America, 2017). |
[465] |
Teng, M. et al. Broadband SOI mode order converter based on topology optimization. In Proceedings of the Optical Fiber Communications Conference and Exposition (IEEE, 2018). |
[466] |
Li, Y. et al. Waveguide metatronics: lumped circuitry based on structural dispersion. Sci. Adv. 2, e1501790 (2016). doi: 10.1126/sciadv.1501790 |
[467] |
Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019). doi: 10.1038/s41586-019-1573-9 |
[468] |
Meng, Y. et al. Waveguide engineering of graphene optoelectronics—modulators and polarizers. IEEE Photonics J. 10, 6600217 (2018). |
[469] |
Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018). doi: 10.1038/s41586-018-0551-y |
[470] |
Qi, Y. F. & Li, Y. Integrated lithium niobate photonics. Nanophotonics 9, 1287–1320 (2020). doi: 10.1515/nanoph-2020-0013 |
[471] |
Yao, Y. et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Lett. 14, 6526–6532 (2014). doi: 10.1021/nl503104n |
[472] |
Sun, J. et al. Large-scale nanophotonic phased array. Nature 493, 195–199 (2013). doi: 10.1038/nature11727 |
[473] |
Zheludev, N. I. & Plum, E. Reconfigurable nanomechanical photonic metamaterials. Nat. Nanotechnol. 11, 16–22 (2016). doi: 10.1038/nnano.2015.302 |
[474] |
Nambiar, S. et al. High efficiency DBR assisted grating chirp generators for silicon nitride fiber-chip coupling. Sci. Rep. 9, 18821 (2019). doi: 10.1038/s41598-019-55140-8 |
[475] |
Yin, X. F. et al. Observation of topologically enabled unidirectional guided resonances. Nature 580, 467–471 (2020). doi: 10.1038/s41586-020-2181-4 |
[476] |
Hsu, C. W. et al. Bound states in the continuum. Nat. Rev. Mater. 1, 16048 (2016). doi: 10.1038/natrevmats.2016.48 |
[477] |
Ong, L. L. et al. Programmable self-assembly of three-dimensional nanostructures from 10, 000 unique components. Nature 552, 72–77 (2017). doi: 10.1038/nature24648 |
[478] |
Sun, W. et al. Casting inorganic structures with DNA molds. Science 346, 1258361 (2014). doi: 10.1126/science.1258361 |
[479] |
Verhagen, E. et al. Nanowire plasmon excitation by adiabatic mode transformation. Phys. Rev. Lett. 102, 203904 (2009). doi: 10.1103/PhysRevLett.102.203904 |
[480] |
Ding, F. & Bozhevolnyi, S. I. A review of unidirectional surface plasmon polariton metacouplers. IEEE J. Sel. Top. Quantum Electron. 25, 4600611 (2019). http://www.onacademic.com/detail/journal_1000041625054099_af14.html |
[481] |
West, P. R. et al. Searching for better plasmonic materials. Laser Photonics Rev. 4, 795–808 (2010). doi: 10.1002/lpor.200900055 |
[482] |
Haffner, C. et al. Low-loss plasmon-assisted electro-optic modulator. Nature 556, 483–486 (2018). doi: 10.1038/s41586-018-0031-4 |
[483] |
Wang, Y. et al. Stable, high-performance sodium-based plasmonic devices in the near infrared. Nature 581, 401–405 (2020). doi: 10.1038/s41586-020-2306-9 |
[484] |
Woessner, A. et al. Highly confined low-loss plasmons in graphene-boron nitride heterostructures. Nat. Mater. 14, 421–425 (2015). doi: 10.1038/nmat4169 |
[485] |
Naik, G. V., Shalaev, V. M. & Boltasseva, A. Alternative plasmonic materials: Beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013). doi: 10.1002/adma.201205076 |
[486] |
Boltasseva, A. & Atwater, H. A. Low-loss plasmonic metamaterials. Science 331, 290–291 (2011). doi: 10.1126/science.1198258 |
[487] |
Tahersima, M. H. et al. Deep neural network inverse design of integrated photonic power splitters. Sci. Rep. 9, 1368 (2019). doi: 10.1038/s41598-018-37952-2 |
[488] |
Melati, D. et al. Mapping the global design space of nanophotonic components using machine learning pattern recognition. Nat. Commun. 10, 4775 (2019). doi: 10.1038/s41467-019-12698-1 |
[489] |
Qu, Y. R. et al. Migrating knowledge between physical scenarios based on artificial neural networks. ACS Photonics 6, 1168–1174 (2019). doi: 10.1021/acsphotonics.8b01526 |
[490] |
Nanoscale and Quantum Photonics Lab. Inverse design of photonics. https://nqp.stanford.edu/inverse-design-photonics. |
[491] |
Lumerical. Photonic inverse design. https://www.lumerical.com/solutions/inverse-design/. |
[492] |
Piggott, A. Y. et al. Inverse-designed photonics for semiconductor foundries. ACS Photonics 7, 569–575 (2020). doi: 10.1021/acsphotonics.9b01540 |
[493] |
Liao, K. et al. On-chip nanophotonic devices based on dielectric metasurfaces. Acta Opt. Sin. 41, 0823001 (2021). doi: 10.3788/AOS202141.0823001 |
[494] |
Kim, Y. et al. Phase modulation with electrically tunable vanadium dioxide phase-change metasurfaces. Nano Lett. 19, 3961–3968 (2019). doi: 10.1021/acs.nanolett.9b01246 |
[495] |
Xie, Y. Y. et al. Metasurface-integrated vertical cavity surface-emitting lasers for programmable directional lasing emissions. Nat. Nanotechnol. 15, 125–130 (2020). doi: 10.1038/s41565-019-0611-y |
[496] |
Lin, X. et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004–1008 (2018). doi: 10.1126/science.aat8084 |
[497] |
Wetzstein, G. et al. Inference in artificial intelligence with deep optics and photonics. Nature 588, 39–47 (2020). doi: 10.1038/s41586-020-2973-6 |
[498] |
Colburn, S. et al. Optical frontend for a convolutional neural network. Appl. Opt. 58, 3179–3186 (2019). doi: 10.1364/AO.58.003179 |
[499] |
Burgos, C. M. V. et al. Design framework for metasurface optics-based convolutional neural networks. Appl. Opt. 60, 4356–4365 (2021). doi: 10.1364/AO.421844 |
[500] |
Georgi, P. et al. Metasurface interferometry toward quantum sensors. Light.: Sci. Appl. 8, 70 (2019). doi: 10.1038/s41377-019-0182-6 |
[501] |
Stav, T. et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science 361, 1101–1104 (2018). doi: 10.1126/science.aat9042 |
[502] |
Özdemir, Ş. K. et al. Parity-time symmetry and exceptional points in photonics. Nat. Mater. 18, 783–798 (2019). doi: 10.1038/s41563-019-0304-9 |
[503] |
Guo, X. X. et al. Nonreciprocal metasurface with space-time phase modulation. Light.: Sci. Appl. 8, 123 (2019). doi: 10.1038/s41377-019-0225-z |
[504] |
Williamson, I. A. D. et al. Integrated nonreciprocal photonic devices with dynamic modulation. Proc. IEEE 108, 1759–1784 (2020). doi: 10.1109/JPROC.2020.3023959 |
[505] |
Feng, L. et al. Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat. Mater. 12, 108–113 (2013). doi: 10.1038/nmat3495 |
[506] |
Miao, P. et al. Orbital angular momentum microlaser. Science 353, 464–467 (2016). doi: 10.1126/science.aaf8533 |
[507] |
Tsakmakidis, K. L. et al. Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering. Science 356, 1260–1264 (2017). doi: 10.1126/science.aam6662 |
[508] |
Lawrence, M., Barton, D. R. III & Dionne, J. A. Nonreciprocal flat optics with silicon metasurfaces. Nano Lett. 18, 1104–1109 (2018). doi: 10.1021/acs.nanolett.7b04646 |
[509] |
Xu, X. Y. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021). doi: 10.1038/s41586-020-03063-0 |
[510] |
Wen, Z. et al. Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Sci. Adv. 2, e1600097 (2016). doi: 10.1126/sciadv.1600097 |
[511] |
Yuan, W. et al. Super-achromatic monolithic microprobe for ultrahigh-resolution endoscopic optical coherence tomography at 800 nm. Nat. Commun. 8, 1531 (2017). doi: 10.1038/s41467-017-01494-4 |
[512] |
Gao, W. L. et al. Chiral surface waves supported by biaxial hyperbolic metamaterials. Light. Sci. Appl. 4, e328 (2015). doi: 10.1038/lsa.2015.101 |
[513] |
Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009). doi: 10.1038/nature08364 |
[514] |
Goykhman, I. et al. Locally oxidized silicon surface-plasmon schottky detector for telecom regime. Nano Lett. 11, 2219–2224 (2011). doi: 10.1021/nl200187v |
[515] |
Ni, G. X. et al. Fundamental limits to graphene plasmonics. Nature 557, 530–533 (2018). doi: 10.1038/s41586-018-0136-9 |
[516] |
Li, Z. B. et al. Graphene plasmonic metasurfaces to steer infrared light. Sci. Rep. 5, 12423 (2015). doi: 10.1038/srep12423 |
[517] |
Liu, Z. et al. Largely tunable terahertz circular polarization splitters based on patterned graphene nanoantenna arrays. IEEE. Photon. J. 11, 4501211 (2019). |
[518] |
Correas-Serrano, D. & Gomez-Diaz, J. S. Nonreciprocal and collimated surface plasmons in drift-biased graphene metasurfaces. Phys. Rev. B 100, 081410 (2019). doi: 10.1103/PhysRevB.100.081410 |
[519] |
You, J. W., Lan, Z. H. & Panoiu, N. C. Four-wave mixing of topological edge plasmons in graphene metasurfaces. Sci. Adv. 6, eaaz3910 (2020). doi: 10.1126/sciadv.aaz3910 |
[520] |
Lee, H. S. et al. Selective amplification of the primary exciton in a MoS2 monolayer. Phys. Rev. Lett. 115, 226801 (2015). doi: 10.1103/PhysRevLett.115.226801 |
[521] |
Hu, F. T. et al. Two-plasmon spontaneous emission from a nonlocal epsilon-near-zero material. Commun. Phys. 4, 84 (2021). doi: 10.1038/s42005-021-00586-4 |
[522] |
Silva, A. et al. Performing mathematical operations with metamaterials. Science 343, 160–163 (2014). doi: 10.1126/science.1242818 |
[523] |
Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021). doi: 10.1038/s41586-020-03070-1 |
[524] |
Camacho, M., Edwards, B. & Engheta, N. A single inverse-designed photonic structure that performs parallel computing. Nat. Commun. 12, 1466 (2021). doi: 10.1038/s41467-021-21664-9 |
[525] |
Qu, Y. R. et al. Inverse design of an integrated-nanophotonics optical neural network. Sci. Bull. 65, 1177–1183 (2020). doi: 10.1016/j.scib.2020.03.042 |
[526] |
Papaioannou, M., Plum, E. & Zheludev, N. I. All-optical pattern recognition and image processing on a metamaterial beam splitter. ACS Photonics 4, 217–222 (2017). doi: 10.1021/acsphotonics.6b00921 |
[527] |
Zhou, J. X. et al. Metasurface enabled quantum edge detection. Sci. Adv. 6, eabc4385 (2020). doi: 10.1126/sciadv.abc4385 |
[528] |
Wu, Z. C. et al. Neuromorphic metasurface. Photonics Res. 8, 46–50 (2020). doi: 10.1364/PRJ.8.000046 |
[529] |
Li, L. L. et al. Intelligent metasurface imager and recognizer. Light. Sci. Appl. 8, 97 (2019). doi: 10.1038/s41377-019-0209-z |
[530] |
del Hougne, P. & Lerosey, G. Leveraging chaos for wave-based analog computation: demonstration with indoor wireless communication signals. Phys. Rev. X 8, 041037 (2018). doi: 10.1103/PhysRevX.8.041037 |
[531] |
del Hougne, P. et al. Learned integrated sensing pipeline: reconfigurable metasurface transceivers as trainable physical layer in an artificial neural network. Adv. Sci. 7, 1901913 (2020). doi: 10.1002/advs.201901913 |
[532] |
Shen, Y. C. et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics 11, 441–446 (2017). doi: 10.1038/nphoton.2017.93 |
[533] |
Wen, X., Xu, K. & Song, Q. H. Design of a barcode-like waveguide nanostructure for efficient chip-fiber coupling. Photonics Res. 4, 209–213 (2016). doi: 10.1364/PRJ.4.000209 |
[534] |
Wang, Y. et al. Design of broadband subwavelength grating couplers with low back reflection. Opt. Lett. 40, 4647–4650 (2015). doi: 10.1364/OL.40.004647 |
[535] |
Slussarenko, S. et al. Guiding light via geometric phases. Nat. Photoincs 10, 571–575 (2016). doi: 10.1038/nphoton.2016.138 |
[536] |
Lumer, Y. et al. Light guiding by artificial gauge fields. Nat. Photonics 13, 339–345 (2019). doi: 10.1038/s41566-019-0370-1 |
[537] |
Miller, D. A. B. Huygens's wave propagation principle corrected. Opt. Lett. 16, 1370–1372 (1991). doi: 10.1364/OL.16.001370 |
[538] |
Lalanne, P. et al. Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff. J. Optical Soc. Am. A 16, 1143–1156 (1999). doi: 10.1364/JOSAA.16.001143 |
[539] |
Smith, D. R. et al. Composite medium with simutaneously negative perme- ability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000). doi: 10.1103/PhysRevLett.84.4184 |
[540] |
Sapra, N. V. et al. Waveguide-integrated dielectric laser particle accelerators through the inverse design of photonics. In Proceedings of 2019 Conference on Lasers and Electro-Optics (IEEE, 2019). |
[541] |
Yang, K. Y. et al. Inverse-designed multi-dimensional silicon photonic transmitters. Preprint at https://arxiv.org/abs/2103.14139 (2021). |
[542] |
Wu, Q., Turpin, J. P. & Werner, D. H. Integrated photonic systems based on transformation optics enabled gradient index devices. Light.: Sci. Appl. 1, e38 (2012). doi: 10.1038/lsa.2012.38 |
[543] |
Wu, S. L. et al. A compact and polarization-insensitive silicon waveguide crossing based on subwavelength grating MMI couplers. Opt. Express 28, 27268–27276 (2020). doi: 10.1364/OE.399568 |